//------------------------------------------------------------------------------- /// /// \file scene.h /// \author Cem Yuksel (www.cemyuksel.com) /// \version 1.0 /// \date August 21, 2019 /// /// \brief Example source for CS 6620 - University of Utah. /// //------------------------------------------------------------------------------- #ifndef _SCENE_H_INCLUDED_ #define _SCENE_H_INCLUDED_ //------------------------------------------------------------------------------- #include <string.h> #define _USE_MATH_DEFINES #include <math.h> #include <vector> #include <atomic> #include "lodepng.h" #include "cyVector.h" #include "cyMatrix.h" #include "cyColor.h" using namespace cy; //------------------------------------------------------------------------------- #define BIGFLOAT 1.0e30f //------------------------------------------------------------------------------- class Ray { public: Vec3f p, dir; Ray() {} Ray( Vec3f const &_p, Vec3f const &_dir) : p(_p), dir(_dir) {} Ray( Ray const &r) : p(r.p), dir(r.dir) {} void Normalize() { dir.Normalize(); } }; //------------------------------------------------------------------------------- class Node; #define HIT_NONE 0 #define HIT_FRONT 1 #define HIT_BACK 2 #define HIT_FRONT_AND_BACK (HIT_FRONT|HIT_BACK) struct HitInfo { float z; // the distance from the ray center to the hit point Node const *node; // the object node that was hit bool front; // true if the ray hits the front side, false if the ray hits the back side HitInfo() { Init(); } void Init() { z=BIGFLOAT; node=nullptr; front=true; } }; //------------------------------------------------------------------------------- class ItemBase { private: char *name; // The name of the item public: ItemBase() : name(nullptr) {} virtual ~ItemBase() { if ( name ) delete [] name; } char const * GetName() const { return name ? name : ""; } void SetName( char const *newName ) { if ( name ) delete [] name; if ( newName ) { int n = strlen(newName); name = new char[n+1]; for ( int i=0; i<n; i++ ) name[i] = newName[i]; name[n] = '\0'; } else { name = nullptr; } } }; template <class T> class ItemList : public std::vector<T*> { public: virtual ~ItemList() { DeleteAll(); } void DeleteAll() { int n=(int)this->size(); for ( int i=0; i<n; i++ ) if ( this->at(i) ) delete this->at(i); } }; template <class T> class ItemFileList { public: void Clear() { list.DeleteAll(); } void Append( T* item, char const *name ) { list.push_back( new FileInfo(item,name) ); } T* Find( char const *name ) const { int n=list.size(); for ( int i=0; i<n; i++ ) if ( list[i] && strcmp(name,list[i]->GetName())==0 ) return list[i]->GetObj(); return nullptr; } private: class FileInfo : public ItemBase { private: T *item; public: FileInfo() : item(nullptr) {} FileInfo( T *_item, char const *name ) : item(_item) { SetName(name); } ~FileInfo() { Delete(); } void Delete() { if (item) delete item; item=nullptr; } void SetObj(T *_item) { Delete(); item=_item; } T* GetObj() { return item; } }; ItemList<FileInfo> list; }; //------------------------------------------------------------------------------- class Transformation { private: Matrix3f tm; // Transformation matrix to the local space Vec3f pos; // Translation part of the transformation matrix mutable Matrix3f itm; // Inverse of the transformation matrix (cached) public: Transformation() : pos(0,0,0) { tm.SetIdentity(); itm.SetIdentity(); } Matrix3f const & GetTransform () const { return tm; } Vec3f const & GetPosition () const { return pos; } Matrix3f const & GetInverseTransform() const { return itm; } Vec3f TransformTo ( Vec3f const &p ) const { return itm * (p - pos); } // Transform to the local coordinate system Vec3f TransformFrom( Vec3f const &p ) const { return tm*p + pos; } // Transform from the local coordinate system // Transforms a vector to the local coordinate system (same as multiplication with the inverse transpose of the transformation) Vec3f VectorTransformTo( Vec3f const &dir ) const { return TransposeMult(tm,dir); } // Transforms a vector from the local coordinate system (same as multiplication with the inverse transpose of the transformation) Vec3f VectorTransformFrom( Vec3f const &dir ) const { return TransposeMult(itm,dir); } void Translate( Vec3f const &p ) { pos+=p; } void Rotate ( Vec3f const &axis, float degrees ) { Matrix3f m; m.SetRotation(axis,degrees*(float)M_PI/180.0f); Transform(m); } void Scale ( float sx, float sy, float sz ) { Matrix3f m; m.Zero(); m[0]=sx; m[4]=sy; m[8]=sz; Transform(m); } void Transform( Matrix3f const &m ) { tm=m*tm; pos=m*pos; tm.GetInverse(itm); } void InitTransform() { pos.Zero(); tm.SetIdentity(); itm.SetIdentity(); } private: // Multiplies the given vector with the transpose of the given matrix static Vec3f TransposeMult( Matrix3f const &m, Vec3f const &dir ) { Vec3f d; d.x = m.GetColumn(0) % dir; d.y = m.GetColumn(1) % dir; d.z = m.GetColumn(2) % dir; return d; } }; //------------------------------------------------------------------------------- // Base class for all object types class Object { public: virtual bool IntersectRay( Ray const &ray, HitInfo &hInfo, int hitSide=HIT_FRONT ) const=0; virtual void ViewportDisplay() const {} // used for OpenGL display }; typedef ItemFileList<Object> ObjFileList; //------------------------------------------------------------------------------- class Node : public ItemBase, public Transformation { private: Node **child; // Child nodes int numChild; // The number of child nodes Object *obj; // Object reference (merely points to the object, but does not own the object, so it doesn't get deleted automatically) public: Node() : child(nullptr), numChild(0), obj(nullptr) {} virtual ~Node() { DeleteAllChildNodes(); } void Init() { DeleteAllChildNodes(); obj=nullptr; SetName(nullptr); InitTransform(); } // Initialize the node deleting all child nodes // Hierarchy management int GetNumChild() const { return numChild; } void SetNumChild(int n, int keepOld=false) { if ( n < 0 ) n=0; // just to be sure Node **nc = nullptr; // new child pointer if ( n > 0 ) nc = new Node*[n]; for ( int i=0; i<n; i++ ) nc[i] = nullptr; if ( keepOld ) { int sn = Min(n,numChild); for ( int i=0; i<sn; i++ ) nc[i] = child[i]; } if ( child ) delete [] child; child = nc; numChild = n; } Node const* GetChild( int i ) const { return child[i]; } Node* GetChild( int i ) { return child[i]; } void SetChild( int i, Node *node ) { child[i]=node; } void AppendChild( Node *node ) { SetNumChild(numChild+1,true); SetChild(numChild-1,node); } void RemoveChild( int i ) { for ( int j=i; j<numChild-1; j++) child[j]=child[j+1]; SetNumChild(numChild-1); } void DeleteAllChildNodes() { for ( int i=0; i<numChild; i++ ) { child[i]->DeleteAllChildNodes(); delete child[i]; } SetNumChild(0); } // Object management Object const * GetNodeObj() const { return obj; } Object* GetNodeObj() { return obj; } void SetNodeObj(Object *object) { obj=object; } // Transformations Ray ToNodeCoords( Ray const &ray ) const { Ray r; r.p = TransformTo(ray.p); r.dir = TransformTo(ray.p + ray.dir) - r.p; return r; } }; //------------------------------------------------------------------------------- class Camera { public: Vec3f pos, dir, up; float fov; int imgWidth, imgHeight; void Init() { pos.Set(0,0,0); dir.Set(0,0,-1); up.Set(0,1,0); fov = 40; imgWidth = 200; imgHeight = 150; } }; //------------------------------------------------------------------------------- class RenderImage { private: Color24 *img; float *zbuffer; uint8_t *zbufferImg; int width, height; std::atomic<int> numRenderedPixels; public: RenderImage() : img(nullptr), zbuffer(nullptr), zbufferImg(nullptr), width(0), height(0), numRenderedPixels(0) {} void Init(int w, int h) { width=w; height=h; if (img) delete [] img; img = new Color24[width*height]; if (zbuffer) delete [] zbuffer; zbuffer = new float[width*height]; if (zbufferImg) delete [] zbufferImg; zbufferImg = nullptr; ResetNumRenderedPixels(); } int GetWidth () const { return width; } int GetHeight () const { return height; } Color24* GetPixels () { return img; } float* GetZBuffer() { return zbuffer; } uint8_t* GetZBufferImage() { return zbufferImg; } void ResetNumRenderedPixels () { numRenderedPixels=0; } int GetNumRenderedPixels () const { return numRenderedPixels; } void IncrementNumRenderPixel(int n) { numRenderedPixels+=n; } bool IsRenderDone () const { return numRenderedPixels >= width*height; } void ComputeZBufferImage() { int size = width * height; if (zbufferImg) delete [] zbufferImg; zbufferImg = new uint8_t[size]; float zmin=BIGFLOAT, zmax=0; for ( int i=0; i<size; i++ ) { if ( zbuffer[i] == BIGFLOAT ) continue; if ( zmin > zbuffer[i] ) zmin = zbuffer[i]; if ( zmax < zbuffer[i] ) zmax = zbuffer[i]; } for ( int i=0; i<size; i++ ) { if ( zbuffer[i] == BIGFLOAT ) zbufferImg[i] = 0; else { float f = (zmax-zbuffer[i])/(zmax-zmin); int c = int(f * 255); if ( c < 0 ) c = 0; if ( c > 255 ) c = 255; zbufferImg[i] = c; } } } bool SaveImage ( char const *filename ) const { return SavePNG(filename,&img[0].r,3); } bool SaveZImage( char const *filename ) const { return SavePNG(filename,zbufferImg,1); } private: bool SavePNG( char const *filename, uint8_t *data, int compCount ) const { LodePNGColorType colortype; switch( compCount ) { case 1: colortype = LCT_GREY; break; case 3: colortype = LCT_RGB; break; default: return false; } unsigned int error = lodepng::encode(filename,data,width,height,colortype,8); return error == 0; } }; //------------------------------------------------------------------------------- #endif