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2.7 Sparse Linear Systems

A system of linear equations is callgparse if only a relatively small number
of its matrix elements:;; are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of{€?) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available =
memory space, and it is wasteful to reserve storage for unfruitful zero elements
Note that there are two distinct (and not always compatible) goals for any sparse2
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse forf2.#y the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to sav
both time (orderN instead of N?) and space (ordeN instead of N?). The
method of solution was not different in principle from the general methof(6f
decomposition; it was just applied cleverly, and with due attention to the bookkeepingh
of zero elements. Many practical schemes for dealing with sparse problems have thi
same character. They are fundamentally decomposition schemes, or else eliminati
schemes akin to Gauss-Jordan, but carefully optimized so as to minimize the numb
of so-calledfill-ins, initially zero elements which must become nonzero during the
solution process, and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucially on the
precise pattern of sparsity of the matrix. Patterns that occur frequently, or that ar
useful as way-stations in the reduction of more general forms, already have speci
names and special methods of solution. We do not have space here for any detail
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rewew of these. References listed at the end of this section will furnish you with an §
" to the specialized literature, and the following list of buzz words (and Figure Z
2.7.1) will at least let you hold your own at cocktail parties: 5
o tridiagonal g
e band diagonal (or banded) with bandwidtf g
e band triangular ®
e block diagonal 8
e block tridiagonal s
e block triangular IS
¢ cyclic banded a
e singly (or doubly) bordered block diagonal %
e singly (or doubly) bordered block triangular g
e singly (or doubly) bordered band diagonal §
e singly (or doubly) bordered band triangular ~
e other (!) 3
You should also be aware of some of the special sparse forms that occur in thé g

solution of partial differential equations in two or more dimensions. See Chapter 19.

If your particular pattern of sparsity is not a simple one, then you may wish to
try ananalyze/factorize/operate package, which automates the procedure of figuring
out how fill-ins are to be minimized. Thanalyze stage is done once only for each
pattern of sparsity. Theactorize stage is done once for each particular matrix that
fits the pattern. Theperate stage is performed once for each right-hand side to
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Figure 2.7.1. Some standard formsfor sparse matrices. (a) Band diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band diagond; (j)
and (k) other! (after Tewarson) [1].

be used with the particular matrix. Consult [2,3] for references on this. The NAG
library [4] has an analyze/factorize/operate capability. A substantial collection of
routines for sparse matrix calculation is also available from IMSL [5] as the Yale
Soarse Matrix Package [6].

You should be aware that the special order of interchanges and eliminations,
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2.7 Sparse Linear Systems 73

prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic
operations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regular LU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts which are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.

Sherman-Morrison Formula

Suppose that you have aready obtained, by herculean effort, the inverse matrix
A~! of a square matrix A. Now you want to make a “small” change in A, for
example change one element a;;, or a few elements, or one row, or one column.
Is there any way of calculating the corresponding change in A ~! without repeating
your difficult labors? Yes, if your change is of the form

A —- (A+uv) (27.1)

for some vectorsu and v. If u is aunit vector e;, then (2.7.1) adds the components
of v to theith row. (Recall that u ® v isamatrix whose ¢, jth element is the product
of the ith component of u and the jth component of v.) If v isaunit vector e ;, then
(2.7.1) adds the components of u to the jth column. If both u and v are proportional
to unit vectors e; and e; respectively, then aterm is added only to the element a ; ;.

The Sherman-Morrison formulagivestheinverse (A +u®v) ~1, and is derived
briefly as follows:

A+uev)'=1+Auev) AT

=1-Atuev+A Tt ugv- ATt uev—..)-A"!

AP AT uRV-ATI AN L)

A7t u)@ (v-ATh

=A"1
14+ A

(2.7.2)
where

A=v-Al.u (2.7.3)

The second line of (2.7.2) is aformal power series expansion. In the third line, the
associativity of outer and inner products is used to factor out the scalars .

The use of (2.7.2) is this: Given A~ and the vectors u and v, we need only
perform two matrix multiplications and a vector dot product,

z=A"1u w=AYHYT.v A=v.z (2.7.4)
to get the desired change in the inverse

ZR®W

Al Al —
- 1T+ A

(2.7.5)
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74 Chapter 2.  Solution of Linear Algebraic Equations

The whole procedure requires only 3V 2 multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse of A (eg., a
tridiagonal matrix, or some other standard sparse form), then (2.7.4)—(2.7.5) alow
you to build up to your related but more complicated form, adding for example a
row or column at atime. Notice that you can apply the Sherman-Morrison formula
more than once successively, using at each stage the most recent update of A !
(equation 2.7.5). Of course, if you have to modify every row, then you are back to
an N3 method. The constant in front of the N3 is only afew times worse than the
better direct methods, but you have deprived yourself of the stabilizing advantages
of pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be
directly applied for the simple reason that storage of the whole inverse matrix A ~!
is not feasible. If you want to add only a single correction of the form u ® v,
and solve the linear system

(A+u®v)-x=hb (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A-y=hb A-z=u (2.7.7)
for the vectorsy and z. In terms of these,
_y_ |y
X=y [1+(v-z)} z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.
Cyclic Tridiagonal Systems

So-called cyclic tridiagonal systems occur quite frequently, and are a good
example of how to use the Sherman-Morrison formulain the manner just described.
The equations have the form

by ¢ 0 .- B 1 1
az by ca - T2 T2
— | 279
an—1 bv-1 cn-1 TN_1 TN-1
« ce 0 an bN TN N

Thisis atridiagona system, except for the matrix elements « and /3 in the corners.
Forms like this are typically generated by finite-differencing differential equations
with periodic boundary conditions (§19.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
acorrection. In the notation of equation (2.7.6), define vectors u and v to be

0 1
0 0

u= | : V= (2.7.10)
0 0

Q
s
\
2
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2.7 Sparse Linear Systems 75

Here ~ is arbitrary for the moment. Then the matrix A is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

L =b1—7, v =bn —afB/y (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm, and then
get the solution from equation (2.7.8).

Theroutine cyclic below implements this algorithm. We choose the arbitrary
parameter v = —b, to avoid loss of precision by subtraction in the first of equations
(2.7.11). In the unlikely event that this causes loss of precision in the second of
these equations, you can make a different choice.

#include "nrutil.h"

void cyclic(float a[], float b[], float c[], float alpha, float beta,

float r[], float x[], unsigned long n)
Solves for a vector x[1..n] the “cyclic” set of linear equations given by equation (2.7.9). a,
b, c, and r are input vectors, all dimensioned as [1..n], while alpha and beta are the corner
entries in the matrix. The input is not modified.
{

void tridag(float a[l, float b[], float c[], float r[], float ul],

unsigned long n);
unsigned long i;
float fact,gamma,*bb,*u,*z;

if (n <= 2) nrerror("n too small in cyclic");

bb=vector(1l,n);

u=vector(1,n);

z=vector(1,n);

gamma = -b[1]; Avoid subtraction error in forming bb[1].

bb[1]=b[1]-gamma; Set up the diagonal of the modified tridi-

bb[n]=b[n]-alpha*beta/gamma; agonal system.

for (i=2;i<n;i++) bb[il=b[i];

tridag(a,bb,c,r,x,n); Solve A-x =.

u[1]=gamma; Set up the vector u.

u[n]=alpha;

for (i=2;i<n;i++) ul[i]=0.0;

tridag(a,bb,c,u,z,n); Solve A -z = u.

fact=(x[1]+beta*x[n]/gamma)/ Form v-x/(1 +v-2z).
(1.0+z[1]+beta*z[n] /gamma) ;

for (i=1;i<=n;i++) x[i] -= fact*z[i]; Now get the solution vector X.

free_vector(z,1,n);

free_vector(u,1,n);

free_vector(bb,1,n);

Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8)
repeatedly, since without storing a new A~! you will not be able to solve the auxiliary
problems (2.7.7) efficiently after thefirst step. Instead, you need the Woodbury formula, which
is the block-matrix version of the Sherman-Morrison formula,

(A+U-vH!

(2.7.12)
—A - [A’l U-@QeVTAT oy hovT At
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76 Chapter 2. Solution of Linear Algebraic Equations

Here A is, as usuad, an N x N matrix, while U and V are N x P matrices with P < N
and usually P <« N. Theinner piece of the correction term may become clearer if written
as the tableau,

U i+vioaTtoul VT (2.7.13)

where you can see that the matrix whose inverseisneeded isonly P x P rather than N x N.

The relation between the Woodbury formulaand successive applications of the Sherman-
Morrison formulaisnow clarified by noting that, if U isthe matrix formed by columns out of the
P vectorsuy, ..., up,andV isthe matrix formed by columns out of the P vectorsvi, ..., vp,

U= |Ui| - |Up V=|Vi| - |Vp (2.7.14)

then two ways of expressing the same correction to A are

P
(A Y u® vk> =(A+U-VT") (2.7.15)
k=1

(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you have A~" in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12), inverting a P x P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’t have storage for A~!, then you must use (2.7.12) in the following way:
To solve the linear equation

(A +) w® vk> x=b (2.7.16)

k=1

first solve the P auxiliary problems

A-z21 =U
A-Zo = U2
(2.7.17)
A-zZp = Up
and construct the matrix Z by columns from the z's obtained,
Z=lzi|---|zp (2.7.18)

Next, do the P x P matrix inversion
H=@1+V"'.2)™! (2.7.19)
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2.7 Sparse Linear Systems 7

Finally, solve the one further auxiliary problem
A-y=Db (2.7.20)
In terms of these quantities, the solution is given by

X=y—2Z [H v y)] (2.7.21)

Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse)
that can be inverted efficiently by partitioning. Suppose that the N x N matrix
A is partitioned into

A= {g g} (2.7.22)

where P and S are square matrices of size p x p and s x s respectively (p + s = N).
The matrices Q and R are not necessarily square, and have sizesp x s and s X p,
respectively.

If the inverse of A is partitioned in the same manner,

Al = F (?1 (2.7.23)
R S

then P, Q, R, S, which have the same sizes as P, Q, R, S, respectively, can be
found by either the formulas

P=P-Q-S!.R)!

Q=-(P-Q-s"R)" Q-5

- (2.7.24)
R=—(S'R.-(P-Q-S'.R)!
S=S'4+(S'R)-(P-Q-S'-R)'-(Q-5}
or else by the equivalent formulas
P=P'+(P'Q (S-R-P Q" (RP
Q=-(P'-Q-(S-R-P.Q"
(2.7.25)

R=—(S—-R-P1.Q ' (R-P
S=(S-R-P1.Q)!

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that
you may wish to compute only once. (Of course, by associativity, you can instead
do the matrix multiplications in any order you like.) The choice between using
equation (2.7.24) and (2.7.25) depends on whether you want P or S to have the
simpler formula; or on whether the repeated expression (S—R-P - Q) ! iseasier
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78 Chapter 2. Solution of Linear Algebraic Equations

to calculate than the expression (P — Q - S™! - R)~!; or on the relative sizes of P
and S; or on whether P~! or S™! is aready known.

Another sometimes useful formula is for the determinant of the partitioned
matrix,

det A = detPdet(S—R-P™'.Q) =detSdet(P-Q-S™'-R)  (27.26)

Indexed Storage of Sparse Matrices

We have already seen (§2.4) that tri- or band-diagonal matrices can be stored in acompact
format that allocates storage only to elements which can be nonzero, plus perhaps afew wasted
locations to make the bookkeeping easier. What about more general sparse matrices? When a
sparse matrix of dimension N x N contains only afew times N nonzero elements (a typical
case), it is surely inefficient — and often physically impossible — to allocate storage for all
N? elements. Even if one did allocate such storage, it would be inefficient or prohibitive in
machine time to loop over al of it in search of nonzero elements.

Obviously some kind of indexed storage scheme isrequired, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix
operations. Unfortunately, there is no one standard scheme in general use. Knuth[7] describes
one method. The Yale Sparse Matrix Package[6] and ITRPACK [8] describe several other
methods. For most applications, we favor the storage scheme used by PCGPACK [9], which
isamost the same as that described by Bentley [10], and also similar to one of the Yale Sparse
Matrix Package methods. The advantage of this scheme, which can be called row-indexed
sparse storage mode, isthat it requires storage of only about two times the number of nonzero
matrix elements. (Other methods can require as much as three or five times.) For simplicity,
we will treat only the case of square matrices, which occurs most frequently in practice.

To represent a matrix A of dimension N x N, the row-indexed scheme sets up two
one-dimensional arrays, call them sa and ija. Thefirst of these stores matrix element values
in single or double precision asdesired; the second storesinteger values. The storagerulesare:

e Thefirst NV locations of sa store A’sdiagonal matrix elements, in order. (Notethat
diagonal elements are stored even if they are zero; thisis at most a dight storage
inefficiency, since diagonal elements are nonzero in most realistic applications.)

e Each of thefirst N locations of ija stores the index of the array sa that contains
the first off-diagonal element of the corresponding row of the matrix. (If there are
no off-diagonal elements for that row, it is one greater than the index in sa of the
most recently stored element of a previous row.)

e Location 1 of ijaisawaysequal to N + 2. (It can beread to determine N.)

e Location N + 1 of ija isone greater than theindex in sa of the last off-diagonal
element of the last row. (It can be read to determine the number of nonzero
elements in the matrix, or the number of elements in the arrays sa and ija.)
Location N + 1 of sa is not used and can be set arbitrarily.

e Entriesin sa at locations > N + 2 contain A’s off-diagonal values, ordered by
rows and, within each row, ordered by columns.

e Entriesinija atlocations> NN +-2 contain the column number of the corresponding
element in sa.

While these rules seem arbitrary at first sight, they result in a rather elegant storage

scheme. As an example, consider the matrix

(2.7.27)

cocoocow
S
oo
ocowvwoo
aNoO OO
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2.7 Sparse Linear Systems 79

In row-indexed compact storage, matrix (2.7.27) is represented by the two arrays of length
11, as follows

index k 1 2 3 4 5 6 7 8 9 |10 | 11

ijalk] 7 8 8 (10 | 11 | 12 3 2 4 5 4

salk] 3. |4 |5 0. 5. x | 1. |7 |09 2. 6.

(2.7.28)

Here z is an arbitrary value. Notice that, according to the storage rules, the value of N
(namely 5) is ijal[1]1-2, and the length of each array is ijalijal[1]1-11-1, namely 11.
The diagonal element in row i is sali], and the off-diagonal elements in that row are in
sa[k] where k loops from ija[i] to ija[i+1]-1, if the upper limit is greater or equal to
the lower one (as in C's for loops).

Hereisaroutine, sprsin, that convertsamatrix from full storage mode into row-indexed
sparse storage mode, throwing away any elements that are less than a specified threshold.
Of course, the principal use of sparse storage mode is for matrices whose full storage mode
won't fit into your machine at all; then you have to generate them directly into sparse format.
Nevertheless sprsin is useful as a precise algorithmic definition of the storage scheme, for
subscale testing of large problems, and for the case where execution time, rather than storage,
furnishes the impetus to sparse storage.

#include <math.h>

void sprsin(float **a, int n, float thresh, unsigned long nmax, float sall,
unsigned long ijall)
Converts a square matrix a[1..n][1..n] into row-indexed sparse storage mode. Only ele-
ments of a with magnitude >thresh are retained. Output is in two linear arrays with dimen-
sion nmax (an input parameter): sa[1..] contains array values, indexed by ija[1l..]. The
number of elements filled of sa and ija on output are both ijalija[1]-1]-1 (see text).
{
void nrerror(char error_text[]);
int i,j;
unsigned long k;

for (j=1;j<=n;j++) saljl=aljl[jl; Store diagonal elements.
ijal[1]=n+2; Index to 1st row off-diagonal element, if any.
k=n+1;
for (i=1;i<=n;i++) { Loop over rows.
for (j=1;j<=n;j++) { Loop over columns.

if (fabs(alil[j]) >= thresh && i != j) {
if (++k > nmax) nrerror("sprsin: nmax too small");

salkl=alil[j1; Store off-diagonal elements and their columns.
ijalkl=j;
}
}
ijali+1]=k+1; As each row is completed, store index to
} next.

The single most important use of a matrix in row-indexed sparse storage mode is to
multiply a vector to its right. In fact, the storage mode is optimized for just this purpose.
The following routine is thus very simple.

void sprsax(float sal], unsigned long ijall, float x[], float b[],
unsigned long n)
Multiply a matrix in row-index sparse storage arrays sa and ija by a vector x[1..n], giving
a vector b[1..n].
{

void nrerror(char error_text[]);
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80 Chapter 2. Solution of Linear Algebraic Equations

unsigned long i,k;

if (ija[1] != n+2) nrerror("sprsax: mismatched vector and matrix");
for (i=1;i<=n;i++) {

blil=salil*x[i]; Start with diagonal term.

for (k=ijalil;k<=ijali+1]-1;k++) Loop over off-diagonal terms.

b[i] += salkl*x[ijalk]];

Itisalso simpleto multiply thetranspose of amatrix by avector toitsright. (Wewill use
this operation later in this section.) Note that the transpose matrix is not actually constructed.

void sprstx(float sal], unsigned long ijall, float x[], float b[],

unsigned long n)
Multiply the transpose of a matrix in row-index sparse storage arrays sa and ija by a vector
x[1..n], giving a vector b[1..n].

void nrerror(char error_text[]);
unsigned long i,j,k;

if (ija[1] !'= n+2) nrerror("mismatched vector and matrix in sprstx");
for (i=1;i<=n;i++) b[il=salil*x[i]; Start with diagonal terms.
for (i=1;i<=n;i++) { Loop over off-diagonal terms.
for (k=ijali];k<=ijali+1]-1;k++) {
j=ijalk];
b[jl += salk]l*x[il;

(Double precision versions of sprsax and sprstx, named dsprsax and dsprstx, are used
by the routine atimes later in this section. You can easily make the conversion, or else get
the converted routines from the Numerical Recipes diskettes.)

In fact, because the choice of row-indexed storage treats rows and columns quite
differently, it is quite an involved operation to construct the transpose of a matrix, given the
matrix itself in row-indexed sparse storage mode. When the operation cannot be avoided, it
is done as follows. An index of all off-diagonal elements by their columns is constructed
(see §8.4). The elements are then written to the output array in column order. As each
element is written, its row is determined and stored. Finaly, the elements in each column
are sorted by row.

void sprstp(float sa[], unsigned long ijal[l, float sb[], unsigned long ijb[l)
Construct the transpose of a sparse square matrix, from row-index sparse storage arrays sa and
ija into arrays sb and ijb.

void iindexx(unsigned long n, long arr[], unsigned long indx[1);
Version of indexx with all float variables changed to long.
unsigned long j,jl,jm,jp,ju,k,m,n2,noff,inc,iv;

float v;
n2=ija[1]; Linear size of matrix plus 2.
for (j=1;j<=n2-2;j++) sbl[jl=saljl; Diagonal elements.

iindexx(ijaln2-11-ijal[1], (long *)&ijal[n2-1],&ijb[n2-1]);

Index all off-diagonal elements by their columns.

jp=0;

for (k=ijal[1];k<=ijal[n2-1]1-1;k++) { Loop over output off-diagonal elements.

m=ijb[k]+n2-1; Use index table to store by (former) columns.

sb[k]l=sal[m];
for (j=jp+1;j<=ijalml;j++) ijb[jl=k; Fill in the index to any omitted rows.
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2.7 Sparse Linear Systems 81

jp=ijalml; Use bisection to find which row element
jl=1; m is in and put that into ijb[k].
ju=n2-1;

while (ju-jl > 1) {
jm=(ju+jl)/2;
if (ijaljm] > m) ju=jm; else jl=jm;

}
ijblkI=j1;
}
for (j=jp+1;j<n2;j++) ijbl[jl=ijaln2-1];
for (j=1;j<=n2-2;j++) { Make a final pass to sort each row by
jl=ijb[j+1]1-ijb[jl; Shell sort algorithm.
noff=ijb[jl-1;
inc=1;
do {
inc *= 3;
inc++;
} while (inc <= jl);
do {
inc /= 3;
for (k=noff+inc+1;k<=noff+jl;k++) {
iv=ijblk];
v=sb[k];
m=k;
while (ijblm-inc] > iv) {
ijb[m]=ijb[m-inc];
sb[m]=sb[m-inc];
m -= inc;
if (m-noff <= inc) break;
}
ijblm]=iv;
sb[m]=v;
}
} while (inc > 1);
}

The above routine embeds internally a sorting algorithm from §8.1, but callsthe external
routine iindexx to construct the initial column index. This routine is identical to indexx,
as listed in §8.4, except that the latter’'s two float declarations should be changed to long.
(The Numerical Recipes diskettes include both indexx and iindexx.) In fact, you can
often use indexx without making these changes, since many computers have the property
that numerical values will sort correctly independently of whether they are interpreted as
floating or integer values.

As final examples of the manipulation of sparse matrices, we give two routines for the
multiplication of two sparse matrices. Theseare useful for techniquesto bedescribedin §13.10.

In general, the product of two sparse matrices is not itself sparse. One therefore wants
to limit the size of the product matrix in one of two ways: either compute only those elements
of the product that are specified in advance by a known pattern of sparsity, or else compute all
nonzero elements, but store only those whose magnitude exceeds some threshold value. The
former technique, when it can be used, is quite efficient. The pattern of sparsity is specified
by furnishing an index array in row-index sparse storage format (e.g., ija). The program
then constructs a corresponding value array (e.g., sa). The latter technique runs the danger of
excessive compute times and unknown output sizes, so it must be used cautiously.

With row-index storage, it is much more natural to multiply a matrix (on the left) by
the transpose of a matrix (on the right), so that one is crunching rows on rows, rather than
rows on columns, Our routines therefore calculate A - BT, rather than A - B. This means
that you have to run your right-hand matrix through the transpose routine sprstp before
sending it to the matrix multiply routine.
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82 Chapter 2. Solution of Linear Algebraic Equations

Thetwoimplementing routines, sprspm for “ pattern multiply” and sprstm for “threshold
multiply” are quite similar in structure. Both are complicated by the logic of the various
combinations of diagonal or off-diagonal elementsfor thetwo input streams and output stream.

void sprspm(float sal], unsigned long ijall, float sb[], unsigned long ijbll,

float sc[], unsigned long ijc[])
Matrix multiply A - BT where A and B are two sparse matrices in row-index storage mode, and
BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the matrix B.
This routine computes only those components of the matrix product that are pre-specified by the
input index array ijc, which is not modified. On output, the arrays sc and ijc give the product
matrix in row-index storage mode. For sparse matrix multiplication, this routine will often be
preceded by a call to sprstp, so as to construct the transpose of a known matrix into sb, ijb.
{

void nrerror(char error_text[]);

unsigned long i,ijma,ijmb,j,m,ma,mb,mbb,mn;

float sum;

if (ijal1] '= ijb[1] [] ijal1] !'= ijc[1])
nrerror ("sprspm: sizes do not match");

for (i=1;i<=ijc[1]-2;i++) { Loop over rows.
j=m=i; Set up so that first pass through loop does the
mn=ijc[i]; diagonal component.
sum=sa[i]*sb[i];
for (;) { Main loop over each component to be output.
mb=1jb[3];

for (ma=ijali];ma<=ijali+1]-1;ma++) {
Loop through elements in A's row. Convoluted logic, following, accounts for the
various combinations of diagonal and off-diagonal elements.
ijma=ija[mal;
if (ijma == j) sum += salmal*sb[jl;
else {
while (mb < ijb[j+1]) {
ijmb=1ijb[mb];
if (ijmb == i) {
sum += sa[i]*sb[mb++];
continue;
} else if (ijmb < ijma) {
mb++;
continue;
} else if (ijmb == ijma) {
sum += sa[ma]*sb[mb++];

continue;
}
break;
}
}
¥
for (mbb=mb;mbb<=ijb[j+1]-1;mbb++) { Exhaust the remainder of B's row.
if (ijb[mbb] == i) sum += sa[i]*sb[mbb];
}
sc[m]=sum;
sum=0.0; Reset indices for next pass through loop.

if (mn >= ijc[i+1]) break;
j=ijc[m=mn++];

#include <math.h>

void sprstm(float sal], unsigned long ijall, float sb[], unsigned long ijbll,
float thresh, unsigned long nmax, float sc[], unsigned long ijc[])

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad



2.7 Sparse Linear Systems 83

Matrix multiply A - BT where A and B are two sparse matrices in row-index storage mode, and
BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the matrix
B. This routine computes all components of the matrix product (which may be non-sparse!),
but stores only those whose magnitude exceeds thresh. On output, the arrays sc and ijc
(whose maximum size is input as nmax) give the product matrix in row-index storage mode.
For sparse matrix multiplication, this routine will often be preceded by a call to sprstp, so as
to construct the transpose of a known matrix into sb, ijb.
{

void nrerror(char error_text[]);

unsigned long i,ijma,ijmb,j,k,ma,mb,mbb;

float sum;

if (ija[1] '= ijb[1]) nrerror("sprstm: sizes do not match");
ijc[1]=k=ijal1];
for (i=1;i<=ijal1]-2;i++) { Loop over rows of A,
for (j=1;j<=ijbl[1]-2;j++) { and rows of B.
if (i == j) sum=salil*sb[j]; else sum=0.0e0;
mb=1ijb[j];
for (ma=ijalil;ma<=ijali+1]-1;ma++) {
Loop through elements in A's row. Convoluted logic, following, accounts for the
various combinations of diagonal and off-diagonal elements.
ijma=ijalmal;
if (ijma == j) sum += sal[mal*sb[j];
else {
while (mb < ijb[j+11) {
ijmb=ijb[mb];
if (ijmb == i) {
sum += sa[i]l*sb[mb++];
continue;
} else if (ijmb < ijma) {
mb++;
continue;
} else if (ijmb == ijma) {
sum += sa[ma]*sb[mb++];
continue;
}

break;

}

}

for (mbb=mb;mbb<=ijb[j+1]-1;mbb++) { Exhaust the remainder of B's row.
if (ijb[mbb] == i) sum += sa[i]*sb[mbb];

}

if (i == j) scl[i]l=sum;

else if (fabs(sum) > thresh) {
if (k > nmax) nrerror("sprstm: nmax too small");
sc[k]=sum;
ijelk++]=j;

Where to put the answer...

}
}
ijcli+1]=k;

Conjugate Gradient Method for a Sparse System

So-called conjugate gradient methods provide a quite general means for solving the
N x N linear system

A-x=b (2.7.29)

The attractiveness of these methods for large sparse systems is that they reference A only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As
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84 Chapter 2. Solution of Linear Algebraic Equations

we have seen, these operations can be very efficient for a properly stored sparse matrix. You,
the “owner” of the matrix A, can be asked to provide functions that perform these sparse
matrix multiplications as efficiently as possible. We, the“grand strategists’ supply the general
routine, 1inbcg below, that solves the set of linear equations, (2.7.29), using your functions.
Thesimplest, “ordinary” conjugate gradient algorithm [11-13] solves (2.7.29) only in the
casethat A issymmetric and positive definite. 1t isbased on theideaof minimizing thefunction

f(x):%x-A-x—b-x (2.7.30)

This function is minimized when its gradient
Vf=A-x—b (2.7.31)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directions p,, and improved minimizers x;.. At each stage a quantity o
is found that minimizes f(Xx + axP,), ahd Xe+1 is set equal to the new point X + axPy.
The p,, and x;, are built up in such away that X1 isalso the minimizer of f over the whole
vector space of directions aready taken, {p;, P, ..., P, }. After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in §10.6, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest isin solving linear,
but not necessarily positive definite or symmetric, equations, a different generalization is
important, the biconjugate gradient method. This method does not, in general, have a simple
connection with function minimization. It constructs four sequences of vectors, rg, Tk, Py,
Pr. k=1,2,.... You supply theinitial vectorsr; and 1, and set p; = ri, p; = 1. Then
you carry out the following recurrence:

o T Tg
Pr APy
Met1 =Tp — APy

ay

_ =~ T
Mht1 =Tr —arA” - Py,

_ (27.32)
By = rktl Tt
Tk Tk
Pri1 = Met1 + BrPy
Pri1 = Tk+1 + BkPy
This sequence of vectors satisfies the biorthogonality condition
Ti-r;=r1;-T; =0, j<i (2.7.33)
and the biconjugacy condition
p,-A-p,=p,-AT P, =0, j<i (2.7.34)
There is also a mutua orthogonality,
Ti-p,=r.-p,=0, j<i (2.7.35)

The proof of these properties proceeds by straightforward induction[14]. As long as the
recurrence does not break down earlier because one of the denominators is zero, it must
terminate after m < N stepswith r,,41 = Tm41 = 0. Thisisbasically because after at most
N steps you run out of new orthogonal directions to the vectors you've aready constructed.

To use the algorithm to solve the system (2.7.29), make an initial guess x; for the
solution. Choose r; to be the residual

r = b—A- X1 (2736)
and choose T1 = r;. Then form the sequence of improved estimates
Xk+1 = Xk + agPy, (2737)

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD



2.7 Sparse Linear Systems 85

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees that ry4; from the
recurrence is in fact the residual b — A - X1 corresponding to Xg+1. Since ry,+1 = 0,
Xm+1 IS the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for general A, in practice thisis rare. More importantly, the exact termination in at
most NV iterations occurs only with exact arithmetic. Roundoff error means that you should
regard the process as a genuinely iterative procedure, to be halted when some appropriate
error criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
agorithm when A is symmetric, and we chooseT; = ri. ThenT, = r; and p,, = p,, for all
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). If A is positive definite as
well as symmetric, the algorithm cannot break down (in theory!). The routine 1inbcg below
indeed reduces to the ordinary conjugate gradient method if you input a symmetric A, but
it does al the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive
definite A, with the choicet; = A -ry instead of T1 = ry. Inthiscase T, = A -ry and
P, = A - p, for al k. Thisalgorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with al dot productsa- b replaced by a- A - b. Itiscalled the minimumresidual
algorithm, because it corresponds to successive minimizations of the function

d(x) = L |A-x—b? (2.7.38)
2 2
wherethe successiveiteratesx; minimize ® over the same set of search directionsp,, generated
in the conjugate gradient method. This agorithm has been generalized in various ways for
unsymmetric matrices. The generalized minimum residual method (GMRES; see[9,15]) is
probably the most robust of these methods.
Note that equation (2.7.38) gives

Vo(x) =A" - (A-x—b) (2.7.39)

For any nonsingular matrix A, AT - A is symmetric and positive definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

(AT .A).x=AT.b (2.7.40)

Don't! The condition number of the matrix AT - A is the square of the condition number of
A (see §2.6 for definition of condition number). A large condition number both increases the
number of iterations required, and limits the accuracy to which a solution can be obtained. It
isamost always better to apply the biconjugate gradient method to the original matrix A.

So far we have said nothing about the rate of convergence of these methods. The
ordinary conjugate gradient method works well for matrices that are well-conditioned, i.e.,
“close” to the identity matrix. This suggests applying these methods to the preconditioned
form of equation (2.7.29),

~—1 ~—1

(A A)-x=A b (2.7.41)

Theideaisthat you might already be able to solve your linear system easily for someA close
to A, in which case A™' - A ~ 1, allowing the algorithm to converge in fewer steps. The
matrix A is called a preconditioner [11], and the overall scheme given here is known as the
preconditioned biconjugate gradient method or PBCG.

For efficient implementation, the PBCG algorithm introduces an additional set of vectors
7, and Z;, defined by

~ ~T

A-z,=ry and A -Zp =Ty (2.7.42)
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86 Chapter 2. Solution of Linear Algebraic Equations

and modifies the definitions of o, Bk, p,, and P, in equation (2.7.32):

o Tk - Zg
=
P APy
B, = Tht1 - Zk+1
k= Tk - Zk (2743)

Pri1 = Zk+1 + BrPy
Pry1 = Ze+1 + BrkPy

For 1inbcg, below, we will ask you to supply routines that solve the auxiliary linear systems

(2.7.42). If you have no idea what to use for the preconditioner A, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely
on the biconjugate gradient method itself.

Theroutinelinbcg, below, isbased onaprogram originally written by Anne Greenbaum.
(See[13] for a different, less sophisticated, implementation.) There are a few wrinkles you
should know about.

What constitutes “good” convergence is rather application dependent. The routine
linbcg therefore provides for four possibilities, selected by setting the flag itol on input.
If itol=1, iteration stops when the quantity |A - X — b|/|b]| is less than the input quantity
tol. If itol=2, the required criterion is

AT (A-x—b)|/JA"" - b| < tol (2.7.44)

If itol=3, the routine uses its own estimate of the error in X, and requires its magnitude,
divided by the magnitude of x, to belessthan tol. The setting itol=4 isthesameasitol=3,
except that the largest (in absolute value) component of the error and largest component of x
are used instead of the vector magnitude (that is, the L., norm instead of the L. norm). You
may need to experiment to find which of these convergence criteriais best for your problem.

On output, err is the tolerance actualy achieved. If the returned count iter does
not indicate that the maximum number of allowed iterations itmax was exceeded, then err
should be less than tol. If you want to do further iterations, leave al returned quantities as
they are and call the routine again. The routine loses its memory of the spanned conjugate
gradient subspace between calls, however, so you should not force it to return more often
than about every N iterations.

Finally, note that 1inbcg is furnished in double precision, since it will be usualy be
used when N is quite large.

#include <stdio.h>
#include <math.h>

#include "nrutil.h"
#define EPS 1.0e-14

void linbcg(unsigned long n, double b[], double x[], int itol, double tol,
int itmax, int *iter, double *err)

Solves A - x = b for x[1..n], given b[1..n], by the iterative biconjugate gradient method.
On input x[1. .n] should be set to an initial guess of the solution (or all zeros); itol is 1,2,3,
or 4, specifying which convergence test is applied (see text); itmax is the maximum number
of allowed iterations; and tol is the desired convergence tolerance. On output, x[1..n] is
reset to the improved solution, iter is the number of iterations actually taken, and err is the
estimated error. The matrix A is referenced only through the user-supplied routines atimes,
which computes the product of either A or its transpose on a vector; and asolve, which solves

A-x=bor KT -X = b for some preconditioner matrix A (possibly the trivial diagonal part of A).
{

void asolve(unsigned long n, double b[], double x[], int itrnsp);

void atimes(unsigned long n, double x[], double r[], int itrnsp);

double snrm(unsigned long n, double sx[], int itol);

unsigned long j;

double ak,akden,bk,bkden,bknum,bnrm,dxnrm,xnrm,zminrm,znrm;

double *p,*pp,*T,*rr,*z,*zz; Double precision is a good idea in this routine.
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/*

p=dvector(1,n);
pp=dvector(1,n);
r=dvector(1,n);
rr=dvector(1,n);
z=dvector(1,n);
zz=dvector(1,n);

Calculate initial residual.

*iter=0;
atimes(n,x,r,0); Input to atimes is x[1..n], output is r[1..n];
for (j=1;j<=n;j++) { the final 0 indicates that the matrix (not its

r[j1=b[jl-r(jl; transpose) is to be used.

rrjl=r(jl;
}

atimes(n,r,rr,0); */ Uncomment this line to get the “minimum resid-

if (itol == 1) { ual” variant of the algorithm.

bnrm=snrm(n,b,itol);

asolve(n,r,z,0); Input to asolve is r[1..n], output is z[1..n];
} the final 0 indicates that the matrix A (not
else if (itol == 2) { its transpose) is to be used.

asolve(n,b,z,0);
bnrm=snrm(n,z,itol);
asolve(n,r,z,0);
}
else if (itol == 3 || itol == 4) {
asolve(n,b,z,0);
borm=snrm(n,z,itol);
asolve(n,r,z,0);
znrm=snrm(n,z,itol);
} else nrerror("illegal itol in linbcg");

while (*iter <= itmax) { Main loop.
++(*iter);
. . . ~T
asolve(n,rr,zz,1); Final 1 indicates use of transpose matrix A" .

for (bknum=0.0,j=1;j<=n;j++) bknum += z[jl*rr[jl;
Calculate coefficient bk and direction vectors p and pp.
if (xiter == 1) {
for (j=1;j<=n;j++) {
pljl=z[jl;
ppljl=zz[jl;

}
else {
bk=bknum/bkden;
for (j=1;j<=n;j++) {
pljl1=bk*p[jl1+z[j];
pp[jl=bk*pp[jl+zz[j];
}
bkden=bknum; Calculate coefficient ak, new iterate x, and new
atimes(n,p,z,0); residuals r and rr.

for (akden=0.0,j=1;j<=n;j++) akden += z[jl*pp[jl;
ak=bknum/akden;
atimes(n,pp,zz,1);
for (j=1;j<=n;j++) {
x[j] += ak*pljl;
r[jl -= ak*z[jl;
rr(j]l -= akxzz[j]l;
}
asolve(n,r,z,0); Solve A - Z =r and check stopping criterion.
if (itol == 1)
*err=snrm(n,r,itol) /bnrm;
else if (itol == 2)
*err=snrm(n,z,itol) /bnrm;
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else if (itol == 3 || itol == 4) {
zmlnrm=znrm;
znrm=snrm(n,z,itol);
if (fabs(zmlnrm-znrm) > EPS*znrm) {
dxnrm=fabs (ak) *snrm(n,p,itol) ;
*err=znrm/fabs (zmlnrm-znrm) *dxnrm;

} else {
*xerr=znrm/bnrm; Error may not be accurate, so loop again.
continue;

}

xnrm=snrm(n,x,itol);

if (*err <= 0.5%xnrm) *err /= xnrm;

else {
*xerr=znrm/bnrm; Error may not be accurate, so loop again.
continue;

¥

}
printf ("iter=/4d err=/12.6f\n",*iter,*err);
if (*err <= tol) break;

}

free_dvector(p,1,n);
free_dvector(pp,1,n);
free_dvector(r,1,n);
free_dvector(rr,1,n);
free_dvector(z,1,n);
free_dvector(zz,1,n);

The routine 1inbcg uses this short utility for computing vector norms:

#include <math.h>

double snrm(unsigned long n, double sx[], int itol)
Compute one of two norms for a vector sx[1..n], as signaled by itol. Used by linbcg.
{

unsigned long i,isamax;

double ans;

if (itol <= 3) {
ans = 0.0;
for (i=1;i<=n;i++) ans += sx[i]*sx[i]; Vector magnitude norm.
return sqrt(ans);
} else {
isamax=1;
for (i=1;i<=n;i++) { Largest component norm.
if (fabs(sx[i]) > fabs(sx[isamax])) isamax=i;
}

return fabs(sx[isamax]);
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So that the specifications for the routines atimes and asolve are clear, we list here
simple versions that assume a matrix A stored somewhere in row-index sparse format.

extern unsigned long ijal];
extern double sal]; The matrix is stored somewhere.

void atimes(unsigned long n, double x[], double r[], int itrnsp)
{
void dsprsax(double sa[], unsigned long ijall, double x[], double b[],
unsigned long n);
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void dsprstx(double sal[], unsigned long ijall, double x[], double b[],
unsigned long n);
These are double versions of sprsax and sprstx.

if (itrnsp) dsprstx(sa,ija,x,r,n);
else dsprsax(sa,ija,x,r,n);

extern unsigned long ijal];
extern double sal]l; The matrix is stored somewhere.

void asolve(unsigned long n, double b[], double x[], int itrnsp)
{

unsigned long i;

for(i=1;i<=n;i++) x[il=(sali]l != 0.0 ? b[il/salil : bl[il);
The matrix A is the diagonal part of A, stored in the first n elements of sa. Since the
transpose matrix has the same diagonal, the flag itrnsp is not used.

CITED REFERENCES AND FURTHER READING:

Tewarson, R.P. 1973, Sparse Matrices (New York: Academic Press). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Artin Numerical Analysis (London: Academic Press),
Chapter 1.3 (by J.K. Reid). [2]

George, A., and Liu, JW.H. 1981, Computer Solution of Large Sparse Positive Definite Systems
(Englewood Cliffs, NJ: Prentice-Hall). [3]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.).
[4]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [5]

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. 1977, Yale Sparse Matrix Pack-
age, Technical Reports 112 and 114 (Yale University Department of Computer Science). [6]

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.2.6. [7]

Kincaid, D.R., Respess, J.R., Young, D.M., and Grimes, R.G. 1982, ACM Transactions on Math-
ematical Software, vol. 8, pp. 302—-322. [8]

PCGPAK User’s Guide (New Haven: Scientific Computing Associates, Inc.). [9]

Bentley, J. 1986, Programming Pearls (Reading, MA: Addison-Wesley), §9. [10]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapters 4 and 10, particularly §510.2-10.3. [11]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 8. [12]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill). [13]

Fletcher, R. 1976, in Numerical Analysis Dundee 1975, Lecture Notes in Mathematics, vol. 506,
A. Dold and B Eckmann, eds. (Berlin: Springer-Verlag), pp. 73-89. [14]

Saad, Y., and Schulz, M. 1986, SIAM Journal on Scientific and Statistical Computing, vol. 7,
pp. 856-869. [15]

Bunch, J.R., and Rose, D.J. (eds.) 1976, Sparse Matrix Computations (New York: Academic
Press).

Duff, I.S., and Stewart, G.W. (eds.) 1979, Sparse Matrix Proceedings 1978 (Philadelphia:
S.LAM.).

(5-80TEY-TZS-0 NASI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvIIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugqwe)d Aq z66T-886T (D) WbuLAdoD

‘(eauBwWyY YUON apisino) Bio abpugqued@AIasiSnoloalip 0 [lewd puas Jo ‘(Ajuo eauawy YUON) €2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 sqo0q sadioay [eauswn 1apio o] ‘paugiyold Ajpais si ‘19Indwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdod Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiayy Joy Adod saded suo axew 0] s1asn 18ulalul 10} pajuelB si uoissiwiad



