
High-Performance Graphics 2025
A. Knoll and C. Peters
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 8

Arches: A Cycle-Level Hardware Simulation Framework
for Exploring Massively Parallel Ray Tracing Architectures

J. Haydel1 G. Bhokare1 K. Zeng1 P. Hong1 S. Kondguli2 B. Budge2 E. Brunvand1 C. Yuksel1

1University of Utah, USA
2Meta Reality Labs, USA

Abstract
We introduce Arches, a hardware simulation framework designed to explore and evaluate massively parallel ray-tracing archi-
tectures. Operating at the cycle level, Arches captures detailed performance metrics, including computational throughput, on-
chip data movement across processors, caches, and off-chip communication via an accurate memory system model. The frame-
work is modular, allowing flexible configuration and interconnection of processor cores, caches, and custom hardware units,
enabling easy exploration of diverse hardware architectures. Arches supports high-performance parallel execution, simulating
complex ray tracing workloads to image completion. It leverages the GNU toolchain, allowing users to write C++ software tar-
geting both the simulated architecture and native execution for debugging, including support for custom instructions to control
specialized hardware components. The framework provides comprehensive performance instrumentation, offering insights into
time-varying statistics across all modules and identifying performance bottlenecks. Our evaluations demonstrate that Arches
delivers performance estimates closely matching real hardware, offering faster and more accurate simulations than existing
open-source hardware simulators. Its modularity also makes it a valuable tool for exploring alternative parallel computing
strategies for high-performance ray tracing, and its extensibility enables adaptation for other workloads or general-purpose
computation.

CCS Concepts
• Computing methodologies → Graphics processors; Ray tracing;

1. Introduction

A cycle-level hardware simulator is an essential component of
architecture research, because manufacturing custom computing
hardware is both expensive and time-consuming. Transistor-level
designs require many person hours and high levels of expertise
to develop. Using a hardware simulator avoids this cost and com-
plexity, allowing quick testing and iteration without the need for
transistor-level design process at each iteration. It also opens the
door for testing fictional components and incomplete designs while
providing power and performance estimates not afforded by higher-
level functional simulations.

Despite these advantages, developing a reliable and flexible
hardware simulator is still a challenging task. This challenge is ex-
acerbated when targeting massively parallel ray tracing architec-
tures. Notably, ray tracing systems can be either compute bound
or memory bound depending on scene, rendering algorithm, and
specifics of the hardware architecture, requiring a cycle-level sim-
ulator to correctly identify bottlenecks. Additionally, not all rays
have the same cost, and ray tracing performance and bottlenecks
can shift during the course of rendering a frame. This requires a
fast simulator that can efficiently handle a large number of comput-

ing units and process the entire rendering task to completion. This
is needed not only for evaluating the performance during different
stages of rendering, but also for verifying that the final rendered im-
age is correctly generated. Furthermore, custom hardware units are
important for high-performance ray intersection tests and traversals
through the scene hierarchy. Therefore, a flexible simulator design
is needed to experiment with different resource distributions and
memory configurations.

Existing hardware simulators are unable to deliver most of these
features. In our experience, they typically scale poorly to a large
number of computing units. Simulation performance is paramount
for quick iteration as a single frame of interesting ray-tracing work
can easily take hours to simulate on existing simulators. Most of
them target specific hardware designs and lack a modular interface
that would allow easy redesign of the simulated architecture.

We present Arches, a new cycle-level hardware simulator infras-
tructure that was designed to meet the needs of massively parallel
hardware ray tracing architecture research. We discuss the design
decisions we followed for developing Arches and its tool set, and
provide evaluations showing the performance, flexibility, and accu-
racy of our hardware simulator.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.70212

https://orcid.org/0009-0005-5488-2381
https://orcid.org/0009-0004-5802-2349
https://orcid.org/0009-0002-1976-6340
https://orcid.org/0009-0005-6345-0927
https://orcid.org/0000-0002-7295-4626
https://orcid.org/0009-0005-9305-3260
https://orcid.org/0000-0001-8881-927X
https://orcid.org/0000-0002-0122-4159
https://doi.org/10.1111/cgf.70212


2 of 11 Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures

Arches is specifically designed for efficiently simulating a large
number of hardware units via parallel computation. The units are
abstracted as different types of modules that can communicate with
each other through interconnects. For each cycle, the modules exe-
cute their custom functions, processing their inputs and generating
their outputs to be passed onto the other modules. Different hard-
ware architectures can be simulated by developing the necessary
modules and specifying their connections using a high-level pro-
gramming interface in C++. We demonstrate the flexibility of this
modular structure by presenting results with various hardware ar-
chitectures we simulated using Arches.

We use a new cycle-level simulation approach that splits the
computation of a cycle into two phases. It allows computing all
simulated modules in parallel, avoiding data hazards (and the over-
head for managing potential data hazards of parallel computation)
by processing message sending and receiving between modules
in two separate passes. This offers an efficient parallel execution
model that is crucial for simulating a large number of modules
without making any assumptions on how the modules operate, in-
cluding their latencies and dependencies on other modules.

Arches is integrated with the GNU toolchain, allowing users to
use C++ to develop both the software that is targeted to run on the
simulated hardware architecture as well as the architecture mod-
els themselves. This includes custom instructions that can be added
to the instruction set for controlling custom hardware units. This
toolchain also allows compiling the same software to run natively
on existing CPUs without the hardware simulator for software de-
velopment and debugging purposes.

Arches also includes flexible instrumentation for measuring the
performance statistics of all modules. These can be collected as
aggregate values or time-varying measurements through the course
of a simulation. This helps in identifying bottlenecks that can shift
during rendering.

We provide experiments comparing Arches to alternative simu-
lators and to actual hardware with a similar architecture. Our results
show that Arches delivers significantly faster hardware simulation
and can reasonably estimate the performance statistics collected
from real hardware.

We release Arches and its source code, including its documenta-
tion, scripts, and example hardware architecture configurations:
https://github.com/Utah-Graphics-Lab/arches

2. Prior work

Simulators have been a crucial component in computer architecture
research for decades, enabling researchers to explore innovative de-
signs for various hardware components within a computer system
without having to fabricate them in silicon or map them to gate-
level computing surfaces such as field programmable gate arrays
(FPGAs). Hardware behavior can be simulated at varying levels of
detail and complexity from functional and trace-driven to cycle-
level and execution-driven simulations.

CPU simulators have undergone significant evolution, transi-
tioning from simple functional and trace-driven simulators [BA97]

to more complex cycle-level [AR13a] and execution-driven sim-
ulators [BBB∗11], capable of executing full operating systems
[BBB∗11, AR13b]. These simulators offer a great way to model
CPU behavior at varying degrees of accuracy and complexity. How-
ever, their focus on modeling complex CPU-level behavior and
their choice of ISAs limits their extensibility to modeling GPU
behavior involving thousands of cores, dedicated fixed functional
units, and graphics-specific rendering algorithms.

The development of GPU simulators has branched into two
distinct paths. Where one branch focused on simulating GPG-
PUs, with notable examples including GemDriod [CNYS∗14],
GPGPU-Sim [KSAR20], gem5-gpu [PHO∗15], and gem5-
Aladin [SXS∗16]. The other branch focused on graphics render-
ing simulators, which evolved with advances in graphics rendering
techniques.

Early graphics rendering simulators supported OpenGL-based
rasterization for immediate mode rendering [dBGR∗06, SLS04]
and tile-based rendering [APX13]. Later simulators, such as
GLTraceSim [SCHBS17], enabled the simulation of GPU behavior
using traces generated by 3D graphics libraries. More recent simu-
lators can support Vulkan-based full-system simulations for hybrid
tile-based rendering techniques [GA19,TSS∗23]. These simulators
are heavily dependent on the underlying graphics APIs, inadver-
tently tying architectural explorations to the limitations of specific
APIs.

Raytracing simulators are relatively new, with earlier variants
providing the ability to model dedicated ray-tracing accelera-
tors [SGB∗18]. More recent ones, such as Vulkan-Sim [SCL∗22],
offer support for popular raytracing APIs. However, similar to their
rasterizer counterparts, reliance of these simulators on graphics
APIs curbs their continued usage, as they significantly limit the in-
troduction of new instructions and hardware components within the
architectural design. In contrast, Arches provides a flexible frame-
work for introducing new instructions and hardware components
and simulating their cycle-level behavior, making it an attractive
solution for researchers seeking to explore innovative ray-tracing
architectures. Arches also executes the instructions it simulates dur-
ing execution stage instead of relying on program traces for data
and control dependency.

In addition to processing behavior, modeling memory access be-
havior at the DRAM level is essential for retaining high simulator
accuracy. DRAMSim [LYR∗20] and USIMM [CBS∗12] are popu-
lar simulators that model DRAM behavior, but they support only a
subset of DRAM standards. Ramulator [LTB∗24] provides cycle-
level simulation support for a variety of DRAM standards with an
option to easily incorporate newer standards. Arches integrates Ra-
mulator as a module, providing it with a flexible and reliable ability
to model memory access behavior.

3. Modular Hardware Simulation Framework

Arches uses a modular simulation framework, where each hard-
ware component is implemented as a module that communicates
with other modules through interconnects. There are two important
reasons for this modular design:

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://github.com/Utah-Graphics-Lab/arches


Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures 3 of 11

1. Performance: By representing a hardware architecture as a col-
lection of modules that operate every cycle to perform their cus-
tom tasks, this allows Arches to execute all modules in parallel,
offering a significant performance boost over hardware simu-
lators that are single-threaded [SCL∗22] or parallelize poorly
[SGB∗18].

2. Flexibility: Most computing architectures use similar compo-
nents, though the number of components and how they are con-
nected vary. But, for research purposes it is also desirable to
be able to posit new and different modules that are outside
the norm. Our modular design provides the flexibility of easily
representing different hardware architectures, including custom
components, as modules.

In this section, we present the details of this modular framework
and how Arches parallelizes the computation.

3.1. Modules

A module in Arches can represent any hardware component. It can
be an entire general-purpose processor core or a part of a processor
core, such as the floating-point unit. Caches and custom special-
purpose units are also represented as modules.

A module can be as small as a fixed-function hardware unit that
performs a simple task or as large as a thread multiprocessor with
many cores. Using larger modules allows us to simulate hardware
functionality at a higher level, offering better simulation perfor-
mance. Having smaller modules provides the flexibility of reusing
them with different architecture designs and sharing them among
multiple modules, such as a floating-point division unit shared by
multiple processor cores.

The simulator treats all modules the same way by calling their
execution functions for each cycle. Modules are responsible for per-
forming their functionalities when prompted, processing their in-
puts and generating their outputs/requests by communicating with
the other modules through interconnects.

To maintain cycle accuracy, modules produce their outputs on
the cycle in which they would be ready for consumption by another
module. If a module takes multiple cycles to complete an action,
a latency FIFO is used to delay the results until the correct global
cycle. If needed, all modules can access the global cycle count,
although currently only the DRAM module (see Section 4.3) does
this because it is able to run at a non-integer ratio to the rest of the
modules in the simulated system.

3.2. Interconnects

Modules are connected to each other via interconnects meant to
model, at a high level, the physical interconnects present in a hard-
ware instantiation. These connections are set up while specifying
the hardware architecture that will be simulated. These intercon-
nects are not switch-level models of actual interconnects, but be-
havior models for simulating and instrumenting the communica-
tions among modules.

The interconnects serve two main purposes:

1. They provide arbitration for communication between modules
and an estimate of interconnection delay through that network.

Return Network

Processor Core

L1

Request Network

Processor Core

Return Network

L2

Request Network

L1 and its interconnects

L2 and its interconnects

Figure 1: A diagram of interconnects between processor core mod-
ules, an L1 module, and an L2 cache module. The colored circles
are the ports of the interconnects. The arrows show the connections
from sink ports and towards the source ports.

2. They allow parallel simulation of modules by eliminating poten-
tial data hazards during data/message passing between modules.

Modules are connected to ports on either end of interconnects.
Transactions flow from the source end towards the sink end. Mod-
ules connected to source ports can only write to these ports, and
module connected to sink ports can only read from them. The mod-
ule reading from a sink port can clear it to acknowledge that the
transaction has been accepted.

The interconnect passes data from its source ports to its sink
ports. Thus, only the interconnect itself can read from source ports
and write to sink ports.

Each interconnect is owned and operated by one module. It al-
lows the owner module to communicate with one or more other
modules. Each one of these other modules is connected to a unique
port of the interconnect. This is critical for avoiding data hazards
during parallel simulation.

If the owner module is using the interconnect to receive transac-
tions from other modules, it is called a request network. The owner
module is connected to its sink ports, and the other modules are
connected to the source ports. Conversely, if the owner module is
using the interconnect to send transactions, it is a return network.
Then, the owner is connected to the source ports, and the other
modules are connected to its sink ports.

Figure 1 shows an example L1 cache module connected to mul-
tiple processor core modules and an L2 cache module via inter-
connects. The L1 cache owns both a request network and a return
network. Each core is connected to one source port of the request
network and one sink port of the return network. Cores can send
request transactions through the request network by writing to that
network’s source ports. The cache then uses this interconnect to ac-

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



4 of 11 Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures

Initialization

Receive Phase
(parallel loop over all modules)

Send Phase
(parallel loop over all modules)

Update output 
log files

(every few thousand cycles)

Are all 
modules 
done?

Output final logs

Simulation
of a cycle

no

yes

Figure 2: Cycle-level hardware simulation flowchart of Arches,
starting with initialization and ending with outputting the final log
files. A two-phase cycle simulation loop runs, where each phase is
a parallel loop over all modules.

cept one of these request transactions. The interconnect clears the
port to send an accept signal to the requesting core. When the cache
is ready to return the data requested by the core, it sends a return
transaction through the return network by writing to its source port.
This interconnect passes the transaction to the corresponding sink
port that is connected to the same core. When the core reads this
transaction, the port is cleared. The L2 cache operates in an identi-
cal fashion, servicing multiple L1 cache modules.

An interconnect can have multiple source and sink ports. For
instance, a cache might contain multiple banks that need to be fairly
shared by multiple processor cores. To facilitate this, its request
network can have multiple source ports that are connected to other
modules and multiple sink ports, each corresponding to a different
bank, but connected to the same cache module.

An interconnect can simultaneously receive multiple requests on
different input ports. When that happens, the interconnect must de-
cide which request(s) to accept. The ports for the accepted requests
are cleared to signal the requesting modules that their requests are
accepted. The other ports are kept unchanged.

The interconnects can simulate various forms of arbitration. A
common one is a crossbar switch that implements round-robin ar-
bitration over the input ports. These crossbars work by keeping a
mask of all pending requests that would like to access a shared
module. Each cycle, a sink arbiter selects the highest priority source
from the set. Each time a source is selected, it becomes the lowest
priority index, and the source after it (in round-robin order) be-
comes the highest priority. Interconnects can also have pipelines
that can be used for simulating arbitration latency.

3.3. Simulation Cycle

Figure 2 shows the flowchart of cycle-level hardware simulation
with Arches. Each cycle is split into two phases: receive and send.

In the receive phase, modules can receive their transactions from
all sink ports to which they are connected. If a module owns a re-
ceive network, it must first run it to handle the arbitration. Then,
it can receive the transaction from that interconnect. The modules
scan the byte arrays for pending request transactions. When a pend-
ing request is found, it can either be acknowledged by clearing the
byte or left on the sink port to be processed on the next cycle. Once
the request is read from the sink port, the corresponding byte is
cleared, representing that the request was acknowledged. Then, the
module can perform is internal functions.

If a module takes more than a single cycle to complete, a latency
FIFO is used to delay the result until the correct cycle. If a module
is fully pipelined, it can generate a result on every cycle into the
latency FIFO. If not, the module is responsible for entering results
only in the appropriate slots in the latency FIFO.

After all modules have completed their receive phase, the simu-
lator synchronizes the simulation threads and begins executing the
send phase.

During the send phase of a cycle, modules can write their request
transactions to the source ports to which they are connected. Since
no two modules may share a port, this operation remains thread-
safe. While sending a request, modules also write a single corre-
sponding byte to indicate that there is a request pending on that
source port. Modules that own a return network must also run that
interconnect at the end of their send phase operations.

When a receiving module finishes processing a request, it may
optionally want to send a response. For instance, in the case of a
load instruction issued to a cache module, the cache must return
the requested data to the processor that issues the load request. In
this case, the same series of steps is carried out on the return net-
work. During the send phase, the sending unit writes the response
to the corresponding source port and sets the byte to represent a
pending response. During the next receive phase, the receiving unit
checks the byte to see if a response is pending, and if so, it may
read the corresponding data and clear the byte, representing an ac-
knowledgment.

While this approach is simple, we find that it works very well
in practice, since the receiving module needs to read the data as-
sociated with requests only when they are acknowledged. All other
requests incur only a single byte of memory traffic, and due to the
send/receive phases, updating the state of the byte array does not re-
quire the use of atomics or mutexes for parallelizing the execution
of the modules during the simulation.

Having two phases per cycle requires all simulation threads to
synchronize twice per cycle. In practice, these incur a non-trivial
overhead in the simulation. Even using a highly optimized thread-
ing library like TBB (thread building blocks), the synchroniza-
tion overhead is still considerable. In practice, however, we find
that when simulating massively parallel architectures like those de-
scribed in this paper, the amount of simulation work that needs to
be done per cycle renders the synchronization overhead marginal.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures 5 of 11

3.4. Instrumentation

One of the most important features of any hardware simulator is
the ability to glean useful information about the activity within the
simulated hardware. To this end, Arches provides extensive logging
for all modules.

Modules can output custom information about their operations.
For example, processor cores can record the issue and stall cycles,
along with the stall type (i.e. pipeline or data hazard) and the in-
struction that caused the stall. Similarly, caches can record statistics
about hit rates, occupancy, and stalls.

Arches provides an easy way to aggregate these statistics. The
user can choose to output per-module statistics or average them
across a set of modules. For example, it is possible to output sep-
arate statistics for each processor core, average statistics for a col-
lection of cores, or average statistics across all cores of the entire
simulated architecture.

Statistics can also be aggregated over time (represented as clock
cycles), including output of the statistics for a specified range of
cycles. This flexibility makes it easy to add detail to the output
where needed and to consolidate data where aggregate information
is preferred.

4. Implementation

We have implemented various modules, including general-purpose
processor cores, various cache models, interconnect types, and
special-purpose units for ray tracing. They form a sufficient set for
simulating different hardware architectures for ray tracing. We dis-
cuss their details in this section.

4.1. Processor Cores

We have implemented a general-purpose processor core module
that is capable of executing RISC-V instructions. This processor
core has a simple 5-stage pipeline, where instructions are fetched,
decoded, and issued in order, but may retire out of order. In this
pipeline, dependencies are checked using a scoreboard and, option-
ally, multi-threading can be enabled to allow a processor core to
switch to a new thread when data hazards are detected.

For resource sharing, a core (or a set of cores) keeps a table
that maps instruction types to modules. Other entries may point to
shared resources that require sending requests to execute but may
need to communicate with a shared functional unit (implemented
as a separate module), e.g. to execute a floating-point divide in-
struction. The number, latencies, and initiation intervals of these
pipelines are configurable, along with instruction-module pairings.
Null entries in this table correspond to an instruction type that can
be executed directly by the core, e.g. a core may be able to execute
an add instructions natively,

Since the simulator is designed to simulate hardware architec-
tures that contain thousands of cores, it must be relatively cheap to
decode and execute each instruction within the processor core mod-
ule. To efficiently simulate each instruction, we implement them
as separate functions that operate on a register file and a program
counter. The corresponding function of an instruction is stored in

a lookup table. When a function is executed, it performs its oper-
ation and then updates the register file program counter state. For
some instructions, such as load and store, this function generates a
request that is passed to another module, such as the lowest level
cache module of the memory system.

In addition to this simple processor core, we have implemented
a module for a generalized shared functional unit (SFU). Since
the ISA (instruction set architecture) implementation takes care of
the functionality of instructions and the interconnects handle re-
source sharing, these SFUs only need to simulate the timing of
their pipelines. When an instruction is received by an SFU, it in-
serts the request into a latency queue with a variable initiation in-
terval. When the request leaves the queue, a write-back transaction
is sent back to the core to indicate that the destination register has
become available.

4.2. Interconnect Implementation

In a tiled multi-core architecture, there are thousands of shared re-
sources that communicate amongst each other and require arbitra-
tion at every cycle. Therefore, it is important that the communi-
cation and arbitration operation of selecting a port is efficient to
execute.

The interconnect design supports various policies, though our
implementation currently only includes round-robin arbitrated
crossbars. A naive implementation of a round-robin arbiter might
keep an array of requests and loop over the entire array every cycle,
looking for the next request. This is wasteful not only in terms of
memory footprint, but also computational cost. Instead, we choose
to simulate the arbiters by keeping a bit mask of all requesting in-
puts. This minimizes the storage cost and allows selection of the
highest priority index in constant time with only a handful of micro
instructions. This optimization allows us to simulate the operation
of thousands of interconnects per cycle, enabling every module to
fairly arbitrate over its inputs.

In addition to the crossbars used by shared units to arbitrate over
their inputs, there is also a standalone crossbar module that can
be used to form a partitioned memory hierarchy. These work by
mapping different parts of the address space to different memory
partitions. This allows each partition, generally composed of sev-
eral slices of cache and a single memory controller, to work inde-
pendently. In order to facilitate this, the crossbar module provides
address translation between global memory addresses and the ad-
dresses within a partition, in addition to routing requests to and
from the partitions. In practice, this means that a partitioned mem-
ory system can be formed by a simple rearrangement of modules to
communicate through this chip-wide crossbar. Additionally, since
these partitions are simulated as separate modules they benefit from
the same parallelism as the rest of the simulator.

4.3. Memory Hierarchy

An accurate model of a complex memory system is one of the most
important components of Arches. Since ray tracing and many other
high-performance workloads tend to be memory-bound, an accu-
rate and flexible memory system is crucial to identifying bottle-
necks so that we can iteratively improve the architecture design.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



6 of 11 Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures

Like our compute model, the memory system is designed to be
highly modular and configurable, allowing us to experiment with
various configurations. The core building blocks of most memory
systems are caches and DRAM (Dynamic Random Access Mem-
ory). To this end, the simulator implements configurable modules
that simulate each of these components. The register file descrip-
tion, another critical part of the memory system, is contained within
the processor core module.

These modules can be connected in different ways to form var-
ious memory hierarchies. For example, a cache hierarchy can be
constructed by connecting multiple levels of caches with different
sizes, organizations, replacement policies, features, latencies, and
bandwidths.

Each of the cache and DRAM modules are highly configurable.
The cache module models a set-associative cache that supports
configurable associativity, latency, and banking, as well as several
write, allocation, and replacement policies. In addition, we allow
for independent allocation and fill granularity, and implement con-
figurable miss status holding registers (MSHRs), which play a key
role in high-performance memory systems by allowing caches to
track multiple outstanding misses without stalling.

One of the most important and complicated parts of the mem-
ory system is DRAM. The behavior of DRAM systems is complex,
and the latency and bandwidth characteristics of these systems are
highly dependent on both their configuration and the data access
pattern at run time. To accurately model this behavior, we choose to
integrate Ramulator [LTB∗24], an open source cycle-level DRAM
simulator. Ramulator supports various DRAM configurations, in-
cluding different DDR, GDDR, and HBM standards as well as in-
ternal behaviors of DRAM such as bank sizes and configurations,
the difference in latency based on open vs. closed DRAM pages,
and row buffer size. To allow Ramulator to interface with the rest
of our simulator, we implement a DRAM wrapper module that con-
verts incoming requests to Ramulator’s memory requests. Then, we
use Ramulator to model the latency of the memory request, while
the corresponding data for the request is filled and then returned to
the requesting unit on the cycle that the request completes. Because
the DRAM model is integrated in Arches as its own module, it in-
herits all of the modularity and multi-threading benefits of Arches.
Additionally, we allow the DRAM model to be clocked at an ar-
bitrary clock ratio with respect to the processor clock in order to
simulate differing memory and core clocks.

4.4. Special-Purpose Units for Ray Tracing

The modular design of the simulator also makes it easy to add
special-purpose hardware. In order to simulate a ray-tracing archi-
tecture, we have implemented a fixed-function ray traversal (RT)
core module.

This RT core performs bounding volume hierarchy (BVH)
traversal and triangle intersection. Our RT core module is imple-
mented using C++ templates to support different types of BVHs,
node formats, and primitive encodings. It works by managing the
traversal state of each ray in hardware and issuing memory requests
to advance the ray traversal. Each request corresponds to a traver-
sal step, loading either a node or primitive data from the memory

L1 Cache

Scheduler / Stack State

Request Queue

Return Queue

Hit Update /
Node Culling

Box
Intersection

Triangle
Intersection

RT Core

Figure 3: The general structure and workflow of our RT core im-
plementation, connected to an L1 cache. It includes a ray scheduler
fed by a custom instruction, request and return queues that manage
L1 communication, box and triangle intersections, and a special-
ized logic for handling hit updates and culling.

hierarchy. Since multiple rays can be resident in the traversal core
at a given time, these memory requests can be queued up in the
memory system to hide latency and keep the memory system fed
with requests.

Figure 3 shows the general structure and workflow of our RT
core. At each cycle, an RT core attempts to schedule work by se-
lecting a ray in a first-come-first-serve (FCFS) manner and popping
the next node or primitive from the ray’s traversal stack. When the
data for a given traversal step returns from the memory system, the
RT core sends the data to the corresponding box or primitive inter-
section pipeline along with the ray data. Once the intersections are
evaluated, the traversal state of the ray is updated, and the ray is
appended to the scheduling queue for the next traversal step.

A ray’s traversal state is represented as a short stack backed by a
restart trail [Lai10]. The restart trail stores the part of the tree that
has been visited, and the short stack stores the top entries. When
the stack runs out of space, we restart traversal again from the root,
masking off the part of the tree that is already visited, using the
restart trail. This reduces the state required by each ray signifi-
cantly, allowing for processing more rays with less area.

A ray traversal is initiated by a processor core, using a custom
instruction we added to the RISC-V ISA. Once a ray’s traversal
completes, the hit record is returned to the originating processor
core. Adding these RT cores to an existing architecture is as easy
as attaching the RT core module to a port in the memory hierarchy,
adding an instruction to pass a ray to the RT core module, and up-
dating the instruction table to send those ray instructions to the RT
core at run time.

5. Programming, Execution, and Tools

Arches simulates the execution of user software on the specified
hardware architecture. The hardware architecture is defined in C++
by creating the necessary modules (Section 3.1) and connecting

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures 7 of 11

them as needed through our interconnection and arbitration mod-
ules (Section 3.2). Custom modules with arbitrary functionalities
and connections can also be added, since the execution mode of
Arches does not need to know what any module does, but only how
they are connected.

The user software can also be written in C++. Since we have im-
plemented a general-purpose processor core module that can load
and execute RISC-V instructions, the user software can be com-
piled using this instruction set and the simulator can directly run
this compiled executable. More specifically, we use RISC-V ELFs
(executable linkable format) for the user software. Therefore, we
can utilize all the tooling available for RISC-V, including relatively
mature C/C++ compilers of the GNU toolchain. Thus, program-
ming the hardware to be simulated is as easy as writing C or C++
code and cross-compiling to target RISC-V.

This process for developing the user software has several bene-
fits. First of all, user software can be easily debugged by compiling
it natively and using a debugger on the CPU, instead of running the
software on Arches. Additionally, RISC-V makes it easy to extend
the ISA to support custom hardware. RISC-V has a relatively sim-
ple encoding and includes reserved opcode space specifically for
architecture-specific instructions. Once an opcode encoding is de-
fined, instructions can be added to the GNU RISC-V assembler and
invoked from C/C++ code using inline assembly. In the simulator,
these instructions can be decoded by adding a new instruction im-
plementation to the corresponding opcode in the instruction table.
The custom instruction can then be invoked from the code running
on the simulated hardware through inline assembly. When compil-
ing the user software natively for debugging purposes, the custom
instructions are automatically replaced by function calls and the
corresponding software implementation can handle the necessary
functionality while running the user software natively on the CPU.

The execution of Arches begins and ends with the user software.
During the initialization of the simulation, the binary for the user
software is copied to a specified memory location in DRAM and
the program counters of all processor cores are initialized to the
entry point. Thus, the simulation begins by directly executing the
user software.

During the course of the simulation, Arches periodically updates
the output text-based log files that record the statistics captured dur-
ing the simulation, enabling us to track the progress of the simula-
tion. This is particularly helpful for early detection of any config-
uration errors or terminating tests that clearly perform below ex-
pectations. When all processor modules reach the end of the user
program, Arches terminates and outputs the final statistics to the
log files.

These log files can then be parsed with our python scripts to
produce visualizations of the desired statistics, such as bandwidth
usage and cache hit rates over time. This can be crucial for un-
derstanding the behavior of the simulated architecture during the
course of an entire simulation, such as rendering a frame to com-
pletion, where bottlenecks can shift over time.

Table 1: Simulated NVIDIA RTX 2080 Hardware configuration.

TPs 64 NVIDIA
TMs 46 NVIDIA
Clock Rate 1515 MHz NVIDIA

Memory Partitions 8 NVIDIA
Memory Type GDDR6 14 GT/s NVIDIA
Controller Latency 100 cycles Vulkan-Sim

L2 Size 4MiB NVIDIA
L2 Assoc 16-way Vulkan-Sim
L2 Slices 32 Vulkan-Sim
L2 Latency 160 cycles Vulkan-Sim

L1 Size 64KiB NVIDIA
L1 Assoc 32-way guess
L1 Banks 4 NVIDIA
L1 Latency 20 cycles Vulkan-Sim

Line size 128B NVIDIA
Fill granularity 32B NVIDIA

RT Cores 46 NVIDIA
Max Rays 64 guess
BVH Build Top down SBVH guess
Node Format Compressed Vulkan-Sim

Wide BVH6 (64B)
Triangle Format Uncompressed (64B) Vulkan-Sim
Stack Short Stack / Restart Trail Vulkan-Sim
Node Pipe Latency 3 cycles guess
Triangle Pipe Latency 22 cycles guess

6. Case Studies

We have implemented and simulated different hardware archi-
tectures for ray tracing using Arches. These include a version
of actual hardware that mimics the ray tracing components of
NVIDIA’s RTX 2080 [gtx] and different ray tracing hardware archi-
tectures proposed in prior research work such as, TRaX [SKKB09],
STRaTA [KSS∗13], and Dual Streaming [SGK∗17]. In addition,
we show the interoperability of these architectures by combining
the ray scheduling units from STRaTA and Dual-Streaming with
the traversal cores and the memory system from the RTX 2080.

6.1. Comparisons to Actual Hardware

To validate the simulator, we compare it against actual hardware.
This is a challenging task, because most details of actual hardware
are not publicly disclosed, and reverse-engineering hardware is out
of scope for this work.

Fortunately, Vulkan-Sim [SCL∗22] provides a configuration for
NVIDIA Turing GPU architecture [tur18], though it is unlikely to
match the actual hardware exactly (as also indicated by our tests).
We use this configuration with the specifications of NVIDIA RTX
2080, forming the set of parameters shown in Table 1. Notice that
while a few of them are from the official specifications, we have
also guessed some parameters, such as the associativity of the L1
caches (which is not supported in Vulkan-Sim) and the configura-
tion details of the RT cores.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



8 of 11 Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures

SM

SM

SM

SM

…

C
rossbar

Memory
Partition

Memory
Partition

…

…

L1 
Cache

RT 
Core

C
rossbar

DRAM
Controller

…

L2 
Slice

L2 
Slice

Core

Core

C
rossbar

Figure 4: Architecture diagram of the simulated NVIDIA RTX 2080
GPU. A SM is stream multi-processor that includes an L1 cache, a
set of processor cores, and an RT core.

Crytek Sponza
0.26 million triangles

Intel Sponza
3.75 million triangles

San Miguel
9.97 million triangles

Figure 5: The scenes and camera angles used in our tests.

Figure 4 shows the architecture diagram of simulated hardware.
We picked a ray tracing workload that mostly relies on the RT cores
and the memory system, rather than the compute cores which have
different architectures (Arches implements MIMD compute while
Vulkan-Sim and real hardware implement SIMD compute). More
specifically, we use path tracing with up to 2 bounces, resulting in
primary rays generated from a camera, secondary rays generated
by sampling a cosine-weighted hemisphere distribution at the hit
points on the primary rays, and tertiary rays generated similarly
at the hit points of the secondary rays. Primary rays represent the
most coherent ray distribution, while the tertiary rays represent the
least coherent distribution. To isolate the behavior of each of these
distributions and to make sure that all tests trace identical rays, we
generate the rays offline and load them from a buffer at run time.
This has two benefits. One it allows us to study each ray distribu-
tion in isolation. The second is that it minimizes shading costs as
each compute core only has to load a ray from memory and send
it to the traversal core. This allows for a fair comparisons between
architecture with different compute capabilities.

Table 2: Million rays per second measurements on an NVIDIA
RTX 2080 and simulation results with Arches and Vulkan-Sim.

Primary Secondary Tertiary
MRays/s Ratio MRays/s Ratio MRays/s Ratio

C
ry

te
k

Sp
on

za RTX 2080 2080 - 1272 - 939 -
Arches 2188 1.05 1341 1.05 1045 1.11
Vulkan-Sim 951 0.46 400 0.31 339 0.36

In
te

l
Sp

on
za RTX 2080 1985 - 753 - 513 -

Arches 2092 1.05 828 1.10 605 1.18
Vulkan-Sim 784 0.39 339 0.45 296 0.58

Sa
n

M
ig

ue
l RTX 2080 1069 - 423 - 278 -

Arches 1001 0.94 446 1.05 322 1.16
Vulkan-Sim N/A - N/A - N/A -

Table 3: L2 Hit rate measurements on an NVIDIA RTX 2080 and
simulation results with Arches and Vulkan-Sim.

Primary Secondary Tertiary
Value Ratio Value Ratio Value Ratio

C
ry

te
k

Sp
on

za RTX 2080 31.8% - 85.6% - 88.9% -
Arches 47.1% 1.48 79.9% 0.93 79.3% 0.89
Vulkan-Sim 51.4% 1.62 67.9% 0.79 66.6% 0.75

In
te

l
Sp

on
za RTX 2080 29.3% - 68.2% - 67.6% -

Arches 40.5% 1.38 70.6% 1.03 70.7% 1.05
Vulkan-Sim 38.3% 1.31 59.4% 0.87 60.3% 0.89

Sa
n

M
ig

ue
l RTX 2080 41.1% - 60.5% - 56.9% -

Arches 69.9% 1.70 69.6% 1.15 64.0% 1.13
Vulkan-Sim N/A - N/A - N/A -

The scenes and camera angles we used in our tests are shown in
Figure 5. Notice that they cover a range of triangle counts, which
is important, as different scene sizes stress different parts of the
computation and the memory system.

In Table 2, we show the average ray throughput over the course
of the frame. We note that the total ray throughput observed using
Arches matches real hardware much closer than Vulkan-Sim. Also,
the results of Arches scale similarly to real hardware across scene
variations and ray distributions. Across all scenes and ray distribu-
tions, the results of Arches remains within 5% to 18% of the real
hardware. These results are remarkably close, considering the vari-
ous potential differences between the simulated and real hardware.
Vulkan-Sim, on the other hand, produced much lower ray through-
put than the actual hardware, even though it matches the hardware
configuration of Arches. Vulkan-Sim failed to run the San Miguel
scene due to its size.

In Table 3 we show the L2 hit rates. Here, we observe more dis-
crepancy between the simulated and the measured results on actual
hardware. In particular, Arches predicts a higher L2 hit rate for the
primary ray distributions than actual hardware between about 11%
to 29%. For the secondary and tertiary rays, the results are closer,
with differences ranging between about 2% to 9%. The difference
in scaling seems to indicate either a difference in L1 cache behav-
ior, the BVH structure, or the traversal order itself. None of these
details are publicly available, so we follow Vulkan-Sim’s model.

In Table 4 and Table 5, we show the bandwidth numbers,as per-
centages of maximum bandwidth, for the L2 cache and the DRAM.

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures 9 of 11

Table 4: L2 Bandwidth measurements on an NVIDIA RTX 2080
and simulation results with Arches.

Primary Secondary Tertiary
Value Ratio Value Ratio Value Ratio

C
ry

te
k

Sp
on

za RTX 2080 9.4% - 42.2% - 51.4% -
Arches 12.9% 1.37 49.0% 1.16 52.5% 1.02

In
te

l
Sp

on
za RTX 2080 13.9% - 37.8% - 39.5% -

Arches 16.5% 1.19 38.5% 1.02 39.5% 1.00

Sa
n

M
ig

ue
l RTX 2080 15.2% - 29.7% - 28.0% -

Arches 33.0% 2.17 39.3% 1.32 34.0% 1.22

Table 5: DRAM Bandwidth measurements on an NVIDIA RTX
2080 and simulation results with Arches.

Primary Secondary Tertiary
Value Ratio Value Ratio Value Ratio

C
ry

te
k

Sp
on

za RTX 2080 20.4% - 21.4% - 20.4% -
Arches 23.3% 1.14 33.6% 1.57 37.1% 1.82

In
te

l
Sp

on
za RTX 2080 32.5% - 41.3% - 42.5% -

Arches 33.5% 1.03 38.6% 0.93 39.5% 0.93

Sa
n

M
ig

ue
l RTX 2080 31.1% - 39.0% - 40.2% -

Arches 34.0% 1.09 40.7% 1.04 41.7% 1.04

These are also elevated, as compared to real hardware. This indi-
cates that the simulated hardware is driving more total L2 traffic
than real hardware, but the DRAM numbers indicate that this traf-
fic is absorbed by the L2 cache in all cases except for the secondary
and teriary rays in the Crytek Sponza scene. This seems to indicate
differing behavior on incoherent rays with shallow traversal depths,
pointing to differences in stack state management. With primary
rays, we see a very similar DRAM traffic. Since primary rays are
unlikely to cause enough cache pressure to evict nodes and primi-
tives before last use, this indicates the size of BVH is in the correct
ballpark. Additionally, the extra traffic from secondary rays in the
San Miguel scene is absorbed entirely by the L2 cache, indicating
more access to the BVH nodes, which is possibly due to a higher
number of restarts on deep traversal paths.

Overall, despite the differences between the actual and simulated
hardware and data structures, we can see that Arches can provide
reasonably close estimates to actual hardware. The unknowns in
these tests prohibit validating the implementation of all modules
in Arches. However, all results are still relatively close to actual
hardware, validating that the overall simulation system is able to
provide a reasonable estimate, even in the presence of variations in
detail.

6.2. Ray Tracing Architecture Research Experiments

The modular structure of Arches makes experimenting with differ-
ent hardware configurations easier. We demonstrate this with three
different variants of the TRaX [SKKB09] ray tracing hardware ar-
chitecture shown in Table 6 with ray tracing performance numbers
(in million rays per second) for the Intel Sponza scene.

Table 6: Million rays per second results of simulations with differ-
ent versions of the TRaX architecture in the Intel Sponza scene.

Primary Secondary Tertiary

TRaX with Software Traversal 625 463 353
TRaX with RT Cores 1026 576 365
TRaX with RT Cores & Compression 2092 828 605

The first version of TRaX handles ray traversal in software, as in
the original work [SKKB09]. The second version replaces the soft-
ware traversal with RT cores, configured similar to the experiments
above. As one would expect, the RT cores provide a substantial per-
formance improvement for primary rays that exhibit a relatively co-
herent memory access pattern. Yet, its improvement on secondary
rays is relatively modest and almost non-existent for tertiary rays,
as the ray traversal becomes more memory bound with the less co-
herent memory access these ray distributions produce. The third
version of TRaX uses slightly different RT cores that can handle
BVH compression. This reduces the scene data size and offers a
significant performance boost across all ray distributions.

While the details of this experiment are out of the scope of this
paper, these experiment illustrate the ease with which these archi-
tecture models can be modified. More specifically, introducing RT
cores involves attaching RT core modules to the processor core
modules and the memory hierarchy, adding a ray traversal instruc-
tion to the ISA, and replacing the software traversal in the user
code with this instruction. Introducing BVH compression was even
easier, as our RT core implementation supports various node and
primitive formats.

We have also used the same RT cores for augmenting the
STRaTA [KSS∗13] and dual streaming [SGK∗17] architectures.
The latency hiding and compression capabilities provided by these
traversal cores provided a significant boost in performance but re-
vealed new bottlenecks in the process. Specifically, the ray stream
traffic for the dual streaming architecture was shown to incur a sig-
nificant cost which is not constant during the course of rendering a
frame. As can be seen in Figure 6, writing rays for the ray stream
has a significant cost earlier in rendering, but, then, this cost almost
disappears. Reading the rays for the ray stream, however, gradually
increases and then decreases near the end of rendering. Looking at
the total DRAM traffic, we can see that the DRAM writes are dom-
inated by writing the rays, except for at the very end of the frame,
when the frame buffer is written. DRAM reads, on the other hand,
are also padded by the scene data traffic, which is more significant
in the very beginning and near the end in this test. The time-varying
data we can export from Arches allows us to produce such graphs
and understand the shifting costs of different operations during ren-
dering.

6.3. Simulation Performance

The performance of a cycle-based simulator can be measured by
the number of cycles it simulates per second. Obviously, this de-
pends on not only the complexity of the hardware architecture that
is being simulated but also the performance of the computer that

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



10 of 11 Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures

Figure 6: The ray stream traffic and total dram read traffic over
time for dual streaming. We see an initial spike in write traffic from
filling the ray queues and then sustained read traffic from draining
them. A large portion of the total DRAM traffic is occupied by the
ray streams.

runs the simulation. For our performance results we used an Intel
i9-13900K CPU at clocked at 5.80GHz with 24 cores (32 threads).

As can be seen in Table 7, while simulating our approximated
version of the NVIDIA RTX 2080 architecture, arches achieved an
average of 19,380 cycles per second using 32 threads. This sim-
ulation speed does not depend on the rendered scene or the ray
distribution, but does depend on the number and types of modules
simulated.

In comparison, Vulkan-Sim achieved an average of 273 cycles
per second while simulating the same architecture. Thus, Arches
achieves about 71 times faster simulations than Vulkan-Sim for this
architecture.

Table 7: Simulated cycles per second when simulating the approx-
imate NVIDIA RTX 2080 architecture on arches and vulkan-sim
using various numbers of threads.

Simulation threads 1 2 4 8 16 32

Arches (clk/s) 2,590 5,380 8,810 12,650 16,130 19,380
Vulkan Sim (clk/s) 273 - - - - -

7. Conclusion

We have presented Arches, a new cycle-level hardware simulation
framework, designed for efficiently handling massively parallel ray
tracing architectures. Arches uses a novel two-phase computation
for simulating each cycle, allowing parallel simulation without data
hazards. Its modular design simplifies the process of making sub-
stantial changes to a hardware architecture, allowing quicker it-
erations for research explorations. Its integration with the GNU
toolchain allows writing software to run on the simulated hardware
using C++, including custom instructions for controlling custom
hardware units, and permits debugging natively on the CPU. Its
comprehensive instrumentation provides detailed statistics that can
be aggregated or turned into a time-varying sequence for deeper
exploration of the results.

Our comparisons to actual GPU hardware shows that Arches
produces reliable results while also deliver superior performance,
as compared to the closest alternative for simulating fixed function
ray tracing hardware.

Acknowledgments

We thank Agatha Mallett for the initial explorations for Arches.

References

[APX13] ARNAU J.-M., PARCERISA J.-M., XEKALAKIS P.: Teapot:
a toolset for evaluating performance, power and image quality on mo-
bile graphics systems. ICS ’13, Association for Computing Machin-
ery, p. 37–46. URL: https://doi.org/10.1145/2464996.
2464999, doi:10.1145/2464996.2464999. 2

[AR13a] ARDESTANI E. K., RENAU J.: Esesc: A fast multicore simu-
lator using time-based sampling. HPCA ’13, IEEE Computer Society,
p. 448–459. URL: https://doi.org/10.1109/HPCA.2013.
6522340, doi:10.1109/HPCA.2013.6522340. 2

[AR13b] ARDESTANI E. K., RENAU J.: Esesc: A fast multicore sim-
ulator using time-based sampling. In Proceedings of the 2013 IEEE
19th International Symposium on High Performance Computer Archi-
tecture (HPCA) (USA, 2013), HPCA ’13, IEEE Computer Society,
p. 448–459. URL: https://doi.org/10.1109/HPCA.2013.
6522340, doi:10.1109/HPCA.2013.6522340. 2

[BA97] BURGER D., AUSTIN T. M.: The simplescalar tool set,
version 2.0. SIGARCH Comput. Archit. News 25, 3 (June 1997),
13–25. URL: http://www.simplescalar.com, doi:10.
1145/268806.268810. 2

[BBB∗11] BINKERT N., BECKMANN B., BLACK G., REINHARDT
S. K., SAIDI A., BASU A., HESTNESS J., HOWER D. R., KRISHNA
T., SARDASHTI S., SEN R., SEWELL K., SHOAIB M., VAISH N., HILL
M. D., WOOD D. A.: The gem5 simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. URL: https://doi.org/10.1145/
2024716.2024718, doi:10.1145/2024716.2024718. 2

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1145/2464996.2464999
https://doi.org/10.1145/2464996.2464999
https://doi.org/10.1145/2464996.2464999
https://doi.org/10.1109/HPCA.2013.6522340
https://doi.org/10.1109/HPCA.2013.6522340
https://doi.org/10.1109/HPCA.2013.6522340
https://doi.org/10.1109/HPCA.2013.6522340
https://doi.org/10.1109/HPCA.2013.6522340
https://doi.org/10.1109/HPCA.2013.6522340
http://www.simplescalar.com
https://doi.org/10.1145/268806.268810
https://doi.org/10.1145/268806.268810
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718


Haydel et al. / Arches: A Cycle-Level Hardware Simulation Framework for Exploring Massively Parallel Ray Tracing Architectures 11 of 11

[CBS∗12] CHATTERJEE N., BALASUBRAMONIAN R., SHEVGOOR M.,
PUGSLEY S. H., UDIPI A. N., SHAFIEE A., SUDAN K., AWASTHI
M., CHISHTI Z. A.: Usimm : the utah simulated memory mod-
ule. URL: https://api.semanticscholar.org/CorpusID:
14712582. 2

[CNYS∗14] CHIDAMBARAM NACHIAPPAN N., YEDLAPALLI P.,
SOUNDARARAJAN N., KANDEMIR M. T., SIVASUBRAMANIAM
A., DAS C. R.: Gemdroid: a framework to evaluate mobile plat-
forms. SIGMETRICS Perform. Eval. Rev. 42, 1 (June 2014), 355–366.
URL: https://doi.org/10.1145/2637364.2591973,
doi:10.1145/2637364.2591973. 2

[dBGR∗06] DEL BARRIO V., GONZALEZ C., ROCA J., FERNANDEZ
A., E E.: Attila: a cycle-level execution-driven simulator for modern
gpu architectures. In 2006 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (2006), pp. 231–241. doi:
10.1109/ISPASS.2006.1620807. 2

[GA19] GUBRAN A. A., AAMODT T. M.: Emerald: Graphics modeling
for soc systems. In 2019 ACM/IEEE 46th Annual International Sympo-
sium on Computer Architecture (ISCA) (2019), pp. 169–182. 2

[gtx] https://www.nvidia.com/en-gb/geforce/
20-series/. 7

[KSAR20] KHAIRY M., SHEN Z., AAMODT T. M., ROGERS T. G.:
Accel-sim: An extensible simulation framework for validated gpu mod-
eling. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA) (2020), pp. 473–486. doi:10.1109/
ISCA45697.2020.00047. 2

[KSS∗13] KOPTA D., SHKURKO K., SPJUT J., BRUNVAND E., DAVIS
A.: An energy and bandwidth efficient ray tracing architecture. In
Proceedings of the 5th High-Performance Graphics Conference (New
York, NY, USA, 2013), HPG ’13, ACM, pp. 121–128. URL: http://
doi.acm.org/10.1145/2492045.2492058, doi:10.1145/
2492045.2492058. 7, 9

[Lai10] LAINE S.: Restart trail for stackless bvh traversal. In Proceedings
of the Conference on High Performance Graphics (Goslar, DEU, 2010),
HPG ’10, Eurographics Association, p. 107–111. 6

[LTB∗24] LUO H., TUGRUL Y. C., BOSTANC F. N., OL-
GUN A., YAGLKC A. G., MUTLU O.: Ramulator 2.0: A
modern, modular, and extensible dram simulator. IEEE Com-
puter Architecture Letters 23, 01 (Jan. 2024), 112–116. URL:
https://doi.ieeecomputersociety.org/10.1109/LCA.
2023.3333759, doi:10.1109/LCA.2023.3333759. 2, 6

[LYR∗20] LI S., YANG Z., REDDY D., SRIVASTAVA A., JACOB B.:
Dramsim3: A cycle-accurate, thermal-capable dram simulator. IEEE
Computer Architecture Letters 19, 2 (2020), 106–109. doi:10.1109/
LCA.2020.2973991. 2

[PHO∗15] POWER J., HESTNESS J., ORR M. S., HILL M. D., WOOD
D. A.: gem5-gpu: A heterogeneous cpu-gpu simulator. IEEE Computer
Architecture Letters 14, 1 (2015), 34–36. doi:10.1109/LCA.2014.
2299539. 2

[SCHBS17] SEMBRANT A., CARLSON T. E., HAGERSTEN E., BLACK-
SCHAFFER D.: A graphics tracing framework for exploring cpu+gpu
memory systems. In 2017 IEEE International Symposium on Workload
Characterization (IISWC) (2017), pp. 54–65. doi:10.1109/IISWC.
2017.8167756. 2

[SCL∗22] SAED M., CHOU Y. H., LIU L., NOWICKI T., AAMODT
T. M.: Vulkan-sim: A gpu architecture simulator for ray tracing. In 2022
55th IEEE/ACM International Symposium on Microarchitecture (MI-
CRO) (2022), pp. 263–281. doi:10.1109/MICRO56248.2022.
00027. 2, 3, 7

[SGB∗18] SHKURKO K., GRANT T., BRUNVAND E., KOPTA D., SPJUT
J., VASIOU E., MALLETT A., YUKSEL C.: SimTRaX: Simulation in-
frastructure for exploring thousands of cores. In Proceedings of the
2018 Great Lakes Symposium on VLSI (New York, NY, USA, 2018),
GLSVLSI ’18, Association for Computing Machinery, p. 503–506.
URL: https://doi.org/10.1145/3194554.3194650, doi:
10.1145/3194554.3194650. 2, 3

[SGK∗17] SHKURKO K., GRANT T., KOPTA D., MALLETT A., YUK-
SEL C., BRUNVAND E.: Dual streaming for hardware-accelerated ray
tracing. In Proceedings of High Performance Graphics (New York,
NY, USA, 2017), HPG ’17, ACM, pp. 12:1–12:11. URL: http://
doi.acm.org/10.1145/3105762.3105771, doi:10.1145/
3105762.3105771. 7, 9

[SKKB09] SPJUT J., KENSLER A., KOPTA D., BRUNVAND E.: Trax: A
multicore hardware architecture for real-time ray tracing. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 28,
12 (2009), 1802–1815. doi:10.1109/TCAD.2009.2028981. 7, 9

[SLS04] SHEAFFER J. W., LUEBKE D., SKADRON K.: A flexible sim-
ulation framework for graphics architectures. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware
(New York, NY, USA, 2004), HWWS ’04, Association for Comput-
ing Machinery, p. 85–94. URL: https://doi.org/10.1145/
1058129.1058142, doi:10.1145/1058129.1058142. 2

[SXS∗16] SHAO Y. S., XI S. L., SRINIVASAN V., WEI G.-Y., BROOKS
D.: Co-designing accelerators and soc interfaces using gem5-aladdin. In
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO) (2016), pp. 1–12. doi:10.1109/MICRO.2016.
7783751. 2

[TSS∗23] TINE B., SAXENA V., SRIVATSAN S., SIMPSON J. R., ALZA-
MMAR F., COOPER L., KIM H.: Skybox: Open-source graphic render-
ing on programmable risc-v gpus. In Proceedings of the 28th ACM In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 3 (New York, NY, USA, 2023),
ASPLOS 2023, Association for Computing Machinery, p. 616–630.
URL: https://doi.org/10.1145/3582016.3582024, doi:
10.1145/3582016.3582024. 2

[tur18] NVIDIA Turing GPU Architecture. Tech. Rep. WP-09183-
001_v01, NVIDIA, 2018. 7

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://api.semanticscholar.org/CorpusID:14712582
https://api.semanticscholar.org/CorpusID:14712582
https://doi.org/10.1145/2637364.2591973
https://doi.org/10.1145/2637364.2591973
https://doi.org/10.1109/ISPASS.2006.1620807
https://doi.org/10.1109/ISPASS.2006.1620807
https://www.nvidia.com/en-gb/geforce/20-series/
https://www.nvidia.com/en-gb/geforce/20-series/
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/ISCA45697.2020.00047
http://doi.acm.org/10.1145/2492045.2492058
http://doi.acm.org/10.1145/2492045.2492058
https://doi.org/10.1145/2492045.2492058
https://doi.org/10.1145/2492045.2492058
https://doi.ieeecomputersociety.org/10.1109/LCA.2023.3333759
https://doi.ieeecomputersociety.org/10.1109/LCA.2023.3333759
https://doi.org/10.1109/LCA.2023.3333759
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1109/IISWC.2017.8167756
https://doi.org/10.1109/IISWC.2017.8167756
https://doi.org/10.1109/MICRO56248.2022.00027
https://doi.org/10.1109/MICRO56248.2022.00027
https://doi.org/10.1145/3194554.3194650
https://doi.org/10.1145/3194554.3194650
https://doi.org/10.1145/3194554.3194650
http://doi.acm.org/10.1145/3105762.3105771
http://doi.acm.org/10.1145/3105762.3105771
https://doi.org/10.1145/3105762.3105771
https://doi.org/10.1145/3105762.3105771
https://doi.org/10.1109/TCAD.2009.2028981
https://doi.org/10.1145/1058129.1058142
https://doi.org/10.1145/1058129.1058142
https://doi.org/10.1145/1058129.1058142
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1109/MICRO.2016.7783751
https://doi.org/10.1145/3582016.3582024
https://doi.org/10.1145/3582016.3582024
https://doi.org/10.1145/3582016.3582024



