
Augmented Vertex Block Descent
CHRIS GILES, Roblox, USA
ELIE DIAZ, University of Utah, USA
CEM YUKSEL, University of Utah, USA

Fig. 1. Our augmented vertex block descent method allows simulating hard constraints, which are critical for handling contacts and stacking,
shown here simulating a pile of 110,000 blocks smashed by a sphere using 4 iterations, taking 3.5 ms (9.8 ms including collision detection) per
frame on an NVIDIA RTX 4090 GPU.

Vertex Block Descent is a fast physics-based simulation method that is un-
conditionally stable, highly parallelizable, and capable of converging to
the implicit Euler solution. We extend it using an augmented Lagrangian
formulation to address some of its fundamental limitations. First, we intro-
duce a mechanism to handle hard constraints with infinite stiffness without
introducing numerical instabilities. Second, we substantially improve the
convergence in the presence of high stiffness ratios. These changes we intro-
duce allow simulating complex contact scenarios involving rigid bodies with
stacking and friction, articulated bodies connected with hard constraints, in-
cluding joints with limited degrees of freedom, and stiff systems interacting
with soft bodies. We present evaluations using a parallel GPU implemen-
tation that can deliver real-time performance and stable simulations with
low iteration counts for millions of objects interacting via collisions, various
joint/attachment constraints, and springs of various stiffness. Our results
show superior performance, convergence, and stability compared to the
state-of-the-art alternatives.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Physics-based animation, simulation

ACM Reference Format:
Chris Giles, Elie Diaz, and Cem Yuksel. 2025. Augmented Vertex Block
Descent. ACM Trans. Graph. 44, 4, Article 112.2213 (August 2025), 12 pages.
https://doi.org/10.1145/3731195

1 INTRODUCTION
Physics-based simulation is the cornerstone of many graphics ap-
plications and various simulation methods have been developed
over the years for different systems/problems. Recently, the vertex
block descent (VBD) [Chen et al. 2024a] method presented superior

Authors’ addresses: Chris Giles, cgiles@roblox.com, Roblox, San Mateo, CA, USA; Elie
Diaz, elie.diaz@utah.edu, University of Utah, Salt Lake City, UT, USA; Cem Yuksel,
cem@cemyuksel.com, University of Utah, Salt Lake City, UT, USA.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 0730-0301/2025/8-ART112.2213
https://doi.org/10.1145/3731195

convergence behavior over prior techniques for soft body dynamics,
delivering higher performance, improved parallelism, unconditional
stability, and the ability to converge to the implicit Euler solution
with the desired accuracy. In addition, VBD was shown to handle
other simulation problems, such as particle systems and rigid body
dynamics. Because VBD is fast and remains stable with few iter-
ations, it is particularly useful for real-time graphics applications
with strict computation budgets. Since VBD is a primal method
[Macklin et al. 2020], it can also easily handle high mass ratios,
which is another important advantage.

However, VBD is not without shortcomings. First of all, it strug-
gles to converge for problems involving high stiffness ratios. Further-
more, there is no mechanism for enforcing explicit hard constraints
(unless the corresponding degree of freedom can be entirely elimi-
nated). Unfortunately, such cases are not uncommon. Collisions, for
example, often require highly stiff penalty forces or hard constraints.
It is also common to connect objects with hard constraints to form
articulated rigid bodies or other mechanical systems. Thus, these
issues prevent widespread use of VBD.
In this paper, we directly address these limitations of VBD and

extend it with an augmented Lagrangian formulation that allows
efficiently handling hard constraints via progressively increasing
stiffness, without introducing numerical instability into the opti-
mization through extreme stiffness values. This adds a dual step
after each primal iteration of VBD, making our approach a hybrid,
primal-dual method. To substantially improve convergence rate in
the presence of high stiffness ratios, we apply the same progressive
stiffness increment used in augmented Lagrangian to arbitrary, finite
stiffness forces. Due to the use of augmented Lagrangian techniques,
we call our method Augmented-VBD or AVBD for short.

Our evaluation involves challenging experiments with hard con-
straints, such as articulated rigid bodies and attachment constraints
for soft bodies, extreme stiffness ratios, and complex collisions and
contacts, such as rigid body stacking, piling, and friction. Our results
show that AVBD can successfully handle these complex interactions,
requiring a small number of iterations to maintain the constraints

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

HTTPS://ORCID.ORG/0009-0009-1502-3487
HTTPS://ORCID.ORG/0009-0002-9493-1684
HTTPS://ORCID.ORG/0000-0002-0122-4159
https://doi.org/10.1145/3731195
https://orcid.org/0009-0009-1502-3487
https://orcid.org/0009-0002-9493-1684
https://orcid.org/0009-0002-9493-1684
https://orcid.org/0000-0002-0122-4159
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3731195

112.2213:2 • Chris Giles, Elie Diaz, and Cem Yuksel

and produce stable simulations (Figure 1), providing a substantial
improvement over VBD in these scenarios in terms of both visual
quality and convergence speed/performance.

2 BACKGROUND
There is a large body of work on physics-based simulations in com-
puter graphics. In this section, we briefly summarize them and then
describe the vertex block descent method in detail.

2.1 Prior Work
Baraff [1997] introduced impulse based simulation methods to the
computer graphics community, which was later refined in Catto
[2006]. This variant, referred to as a sequential impulse solver, solves
for the dual variables (impulses) sequentially using projected Gauss-
Seidel (PGS), followed by an application of the impulses to get an
updated velocity and position using semi-implicit Euler integration.
This method forms the cornerstone of most real time rigid body
simulators used in video games, VR applications, CGI, and many
others. This is primarily due to its simplicity and robustness, par-
ticularly at low iteration counts. It is very effective for the hard
equality and inequality constraints present in contact, friction, and
articulated joints. There are some limitations, however. For one, it
struggles to deal with high mass ratios due to poor conditioning
of the linear system [Macklin et al. 2020]. Andrews et al. [2017a]
proposed a robust way of including a geometric stiffness term which
improves convergence of the dual formulation in the presence of
high mass ratios, but only when using a computationally intensive
direct solver. Being a purely constraint centric approach, it is not
always possible to include arbitrary non-constraint forces in dual
formulations. Finally, due to linearizations inherent to the methods,
they struggle with highly non-linear constraints.

More recently, position-based dynamics (PBD) [Müller et al. 2007]
and related extensions (XPBD) [Macklin et al. 2016, 2019; Müller
et al. 2020] were introduced. Unlike sequential impulse methods,
which solve for constraint impulses then integrate velocity to get
position, these position-based methods solve for constraint forces
then directly update position with a fully implicit Euler integrator.
They solve constraints in an iterative fashion using a non-linear
Gauss-Seidel solver. This allows these methods to handle non-linear
constraints and forces much more robustly. They are still solving
the dual problem, which is to say, they still suffer from high mass
ratio issues and implementation challenges when including non-
constraint forces.

Macklin et al. [2019] showed that trading Gauss-Seidel iterations
for sub-steps results in better convergence for a similar computa-
tional cost, especially in the presence of high mass ratios, with the
added benefit of better energy conservation. This approach can be
applied to impulse or position based methods, having been coined
recently as temporal Gauss-Seidel. However, the number of sub-steps
required depends on the specific mass ratios present, and it is not
easy to predict how many are required in the worst case. Giles and
Andrews [2024] showed a method for adaptively determining the
largest safe time-step for maintaining stability in dual methods, but
this approach does not reduce the upper bound on the number of
sub-steps required.

Position-based methods have seen recent adoption for soft body
and cloth simulation, but less so for constrained rigid body simula-
tion. This is because position-based methods by design will correct
constraint error (potential energy) by converting it into momentum
(kinetic energy). For soft bodies and other non-constraint forces,
this is desirable. However, for hard constraints, which should never
be violated, this can result in undesirably energetic simulations.
This violation can occur when under-solving due to a fixed iteration
count, or if constraints are violated at the start of the simulation
for any other reason. This issue is less apparent or non-existent in
sequential impulse techniques through the use of post stabilization
[Cline and Pai 2003]. Macklin et al. [2019] proposed a post stabiliza-
tion method at the velocity level to help alleviate this issue, though
it can take many iterations to remove all added energy.
Recently, primal type methods have received much attention in

the computer graphics space. These methods, rather than solve for
constraint impulse or forces, solve directly for position or velocity
updates. Macklin et al. [2020] describes how primal and dual meth-
ods are related, and shows that primal methods are not sensitive to
high mass ratios, and instead are sensitive to high stiffness ratios.
They showed promising results, but are somewhat limited by the
convergence rate of Jacobi iterations, which is particularly sensitive
to high stiffness ratios. Lan et al. [2022] use the IPC framework to
efficiently simulate rigid bodies, while preventing penetration by
treating them as stiff affine bodies. Guo et al. [2024] use a Barrier-
augmented Lagrangian formulation to improve the conditioning and
convergence for elastodynamic systems, using an adaptive primal-
dual optimization scheme. Chen et al. [2024b] introduce an interior
point primal-dual method solved using Newton’s method, specifi-
cally targeted at contact and friction. Similar to our work, they show
that hybrid primal-dual methods inherit the benefits of both primal
and dual formulations. They do not, however, investigate constraint
types or forces other than contacts and friction.
These methods use global solvers, which are very accurate, but

struggle to provide real-time performance for even moderately sized
scenes, since they do not scale linearly with the number of bodies.
Our method can achieve comparable accuracy to global methods
with enough iterations.

2.2 Vertex Block Descent
Another recent primal type method is vertex block descent (VBD)
[Chen et al. 2024a] for computing implicit Euler steps [Baraff and
Witkin 1998; Hirota et al. 2001; Martin et al. 2011; Volino and
Magnenat-Thalmann 2001], which was traditionally approximated
using a single Newton step by solving a global linear system [Baraff
and Witkin 1998]. This global solution can result in stability issues
with stiff problems and large time steps. VBD avoids this by using
local Gauss-Seidel iterations to minimize the variational energy
[Kane et al. 1999, 2000; Kharevych et al. 2006; Lew et al. 2004; Simo
et al. 1992]

x𝑡+Δ𝑡 = argmin
x

1
2Δ𝑡2

∥x − y∥2𝑀 + 𝐸 (x) , (1)

where Δ𝑡 is the timestep size, x𝑡+Δ𝑡 are the positions (i.e. degrees
of freedom) at the end of the timestep, y is the inertial positions,
computed using the positions x𝑡 and velocities v𝑡 at the begining

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

Augmented Vertex Block Descent • 112.2213:3

of the timestep, along with external acceleration, such that

y = x𝑡 + Δ𝑡v𝑡 + Δ𝑡2aext (2)

combined with the mass-weighted norm ∥·∥𝑀 , and 𝐸 (x) is the total
potential energy evaluated at x.

Instead of solving Equation 1 directly, VBD moves a single mass
(i.e. vertex) 𝑖 at a time, assuming all others are fixed, to iteratively
minimize the local variational energy

x𝑖 ← argmin
x𝑖

1
2Δ𝑡2

∥x𝑖 − y𝑖 ∥2M𝑖
+

∑︁
𝑗∈F𝑖

𝐸 𝑗 (x) , (3)

whereM𝑖 is the mass matrix and 𝐸 𝑗 is the energy of a force element
𝑗 in F𝑖 . Equation 3 is solved using a single Newton iteration that
corresponds to the linear system

H𝑖 Δx𝑖 = f𝑖 , (4)

where Δ𝑥𝑖 is the position change between iterations, f𝑖 is the force

f𝑖 = −
1
Δ𝑡2

M𝑖 (x𝑖 − y𝑖) +
∑︁
𝐽 ∈F𝑖

f𝑖 𝑗 , (5)

using f𝑖 𝑗 = −𝜕𝐸 𝑗 (x)/𝜕x𝑖 , and H𝑖 is the Hessian

H𝑖 =
M𝑖

Δ𝑡2
+

∑︁
𝐽 ∈F𝑖

H𝑖 𝑗 , (6)

such that H𝑖 𝑗 = 𝜕2𝐸 𝑗 (𝑥)/𝜕x2𝑖 is the Hessian of each force element 𝑗
acting on mass 𝑖 . When using particles/vertices of 3 degrees of
freedom (DOF) each and mass 𝑚𝑖 , M𝑖 = 𝑚𝑖 I and H𝑖 are 3 × 3
matrices, where I is the identity matrix. For rigid bodies, M𝑖 is
a 6 × 6 matrix containing the mass in the upper diagonal block, and
rotated moment of inertia in the lower diagonal block.
The linear systems in Equation 4 are small enough that we can

solve for Δx𝑖 by directly inverting H𝑖 , such that Δx𝑖 = H−1
𝑖

f𝑖 .
H𝑖 is not guaranteed to be symmetric positive definite (SPD). If

we can ensure that the system is SPD, we can use more efficient
and robust methods for solving the system such as using an 𝐿𝐷𝐿𝑇

decomposition. We will show how to construct an approximation
of H𝑖 in Section 3.5 which guarantees an SPD system.
The equations for rotational degrees of freedom involve minor

modifications to the ones above, as we detail in Section 4.
When combined with line search [Hirota et al. 2001], VBD can

guarantee descent in variational energy with each step, though line
search is often unnecessary in practice.
Algorithmically, VBD resembles XPBD, which is also iterative,

but in the dual space that operates on one constraint at a time.
Thus, parallelization with XPBD is achieved by graph coloring the
constraints [Fratarcangeli and Pellacini 2015; Fratarcangeli et al.
2016; Ton-That et al. 2023], while VBD colors the vertices, resulting
in significantly fewer colors than XPBD, which leads to improved
parallelization. More importantly, while VBD directly solves the
implicit Euler step, XBPD’s formulation suffers from approximation
errors that negatively impact the visual behavior. Also, being a dual
method, XPBD can result in significant error with high mass ratios,
which is entirely avoided by VBD’s primal formulation.

On the other hand, VBD struggles with high stiffness ratios
and cannot model hard constraints, which are easy to handle with

XPBD’s dual formulation. Our method directly addresses these limi-
tations of VBD, which are particularly important for robustly and
efficiently handling attachment, collision, and contact constraints,
and critical for simulating articulated rigid bodies.

3 VBD WITH AUGMENTED LAGRANGIAN
VBD can handle constraints using a quadratic energy potential

𝐸 𝑗 (x) =
1
2
𝑘 𝑗

(
𝐶 𝑗 (x)

)2
(7)

where 𝑘 𝑗 and 𝐶 𝑗 are the stiffness and the constraint error for con-
straint 𝑗 . This works well for soft constraints, but stiffer constraints
can lead to convergence issues. Hard constraints, on the other hand,
cannot be handled this way, as their stiffness would be infinite. Us-
ing finite but large stiffness values, on the other hand, negatively
impacts the convergence of VBD.

We extend the VBD formulation to support hard constraints using
the augmented Lagrangian method (Section 3.1). Then, we explain
how it can be used for handling contacts and inequality constraints
(Section 3.2). Motivated by this approach, we present a method that
significantly improves the convergence of VBD in the presence of
forces with high stiffness ratios (Section 3.4). Since stiff systems
are more likely to contain indefinite Hessians, we describe a simple
method for handling them (Section 3.5). Then, we present a simple
method to resolve the explosive error correction introduced by hard
constraints when the constraint error exists at the beginning of
the step (Section 3.6). Finally, we present a simple warm-starting
approach that can significantly improve convergence, (Section 3.7).

3.1 Hard Constraints
To support hard constraints with 𝑘 𝑗 = ∞, we use an augmented
Lagrangian formulation for the constraint energy, such that for each
iteration 𝑛 we use

𝐸
(𝑛)
𝑗
(x) = 1

2
𝑘
(𝑛)
𝑗

(
𝐶 𝑗 (x)

)2
+ 𝜆 (𝑛)

𝑗
𝐶 𝑗 (x) , (8)

where 𝑘 (𝑛)
𝑗

is the finite stiffness and 𝜆 (𝑛)
𝑗

the Lagrange multiplier
(also called dual variable) used for AVBD iteration 𝑛. The resulting
constraint force is then

f (𝑛)
𝑖 𝑗

= −
(
𝑘
(𝑛)
𝑗

𝐶 𝑗 (x) + 𝜆 (𝑛)𝑗

) 𝜕𝐶 𝑗 (x)
𝜕x𝑖

. (9)

For the first iteration 𝑛 = 0, we can initialize the variables using

𝑘
(0)
𝑗

= 𝑘start and 𝜆
(0)
𝑗

= 0 , (10)

where 𝑘start > 0 is an initial stiffness parameter. Before we begin the
next iteration, the dual variable is updated using

𝜆
(𝑛+1)
𝑗

= 𝑘
(𝑛)
𝑗

𝐶 𝑗 (x) + 𝜆 (𝑛)𝑗
. (11)

Notice that with this updated dual variable, the Lagrangian term in
Equation 9 is sufficient to apply the same amount of force as before
without violating the constraint at all.

Here, the stiffness variable merely determines how fast the dual
variable grows over multiple iterations to provide the necessary
force. Thus, it is helpful to adjust the stiffness variable between

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

112.2213:4 • Chris Giles, Elie Diaz, and Cem Yuksel

iterations to improve convergence. We use

𝑘
(𝑛+1)
𝑗

= 𝑘
(𝑛)
𝑗
+ 𝛽 |𝐶 𝑗 (x) | , (12)

where 𝛽 is a scaling parameter that controls how quickly the stiffness
is increased. We use 𝛽 = 10 for all examples in this paper, though
the results are not sensitive to the value of 𝛽 used and we observed
similar results for any 𝛽 ∈ [1, 1000] we tested. Even using 𝛽 = 0,
which keeps the stiffness at 𝑘start, works, but typically requires more
iterations to reduce the constraint error.
Using this stiffness update with 𝛽 > 0, the value of 𝑘start is not

crucial either, but picking a good initial stiffness improves conver-
gence, as it controls how fast the dual variable is updated after the
first iteration. In Section 3.7, we discuss a method for warm-starting
the stiffness and dual variable to improve convergence.

With this formulation, the stiffness term often remains relatively
small, while the constraint can be perfectly satisfied. This approach
not only avoids numerical instabilities of high stiffness, but also
offers strong theoretical convergence [Birgin and Martínez 2014].

3.2 Inequality Constraints
There are many types of hard constraints which must be bounded by
some lower or upper force limits. Some examples include contacts,
friction, and joint limits. Previous works using a primal formulation
circumvent this by approximating inequalities using a function with
a smooth boundary [Chen et al. 2024a; Lan et al. 2022; Macklin et al.
2020]. However, these smooth functions do not exactly model the
bounds, which are particularly important for accurate modeling
of Coulomb friction needed to achieve stable stacking [Chen et al.
2024b].

Dual methods based on projected Gauss-Seidel model bounds by
clamping the Lagrange multipliers at each iteration [Catto 2006].
We take a similar approach and model bounds by clamping the
Lagrange multiplier, as it controls the magnitude of the force. Note
that we can rewrite Equation 9 as

f (𝑛)
𝑖 𝑗

= −𝜆+𝑗
𝜕𝐶 𝑗 (x)
𝜕x𝑖

where 𝜆+𝑗 = 𝑘
(𝑛)
𝑗

𝐶 𝑗 (x) + 𝜆 (𝑛)𝑗
. (13)

Notice that this definition for 𝜆+
𝑗
above is the same as 𝜆 (𝑛+1)

𝑗
using

Equation 11, except that 𝐶 𝑗 (x) above is computed before updating
x𝑖 . Since ∥𝜕𝐶 𝑗 (x)/𝜕x𝑖 ∥ = 1 for typical constraints, bounding the
Lagrange multiplier in turn bounds the magnitude of the force.
Specifically, we define 𝜆min

𝑗
and 𝜆max

𝑗
as the minimum andmaximum

force bounds, respectively. We use them to clamp 𝜆+
𝑗
, when needed.

This results in a discontinuous force with zero Hessian when the
force exceeds the bounds, preventing the optimizer from making
progress.
One simple solution is using the exact clamped Lagrange multi-

pliers, as described above, but approximating the Hessian without
clamping. This is a more conservative choice as it can cause smaller
updates at boundaries, but lacks any discontinuities and in practice
converges to the exact bounds with enough iterations.
A better Hessian approximation for the clamped force can be

achieved by stiffness rescaling, inspired by the friction model of

[Macklin et al. 2020], such that

�̃�
(𝑛)
𝑗

=

������𝜆
min
𝑗
− 𝜆 (𝑛)

𝑗

𝐶 𝑗 (x)

������ , if 𝜆+
𝑗
< 𝜆min

𝑗
and 𝐶 𝑗 (x) ≠ 0,

������𝜆
max
𝑗
− 𝜆 (𝑛)

𝑗

𝐶 𝑗 (x)

������ , if 𝜆+
𝑗
> 𝜆max

𝑗
and 𝐶 𝑗 (x) ≠ 0,

𝑘
(𝑛)
𝑗

, otherwise ,

(14)

where 𝜆+
𝑗
is the force before clamping is applied, This rescaled

stiffness is used in place of the original one only for calculating the
Hessian, when building the left-hand side of Equation 4.

We can further optimizewith a simplemodification to the stiffness
increment of Equation 12. If the force for the current iteration is
outside of the desired force bounds, then there is no need to increase
the stiffness value as this could potentially push the solution further
away from the force bounds. Therefore, we only apply the stiffness
update of Equation 12 when 𝜆min

𝑗
< 𝜆+

𝑗
< 𝜆max

𝑗
.

3.3 Frictional Contacts
We model contacts along with friction using a 3D constraint

C𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (x) =
[
t̂ b̂ n̂

]𝑇 (r𝑎 − r𝑏) (15)

where n̂, t̂, and b̂ form a 3 × 3 orthonormal basis about the contact
normal n̂, and r𝑎 and r𝑏 are the world-space contact points for the
colliding bodies/particles 𝑎 and 𝑏. The first two components of this
constraint model the friction force and the last one is the normal
force along the collision direction.

To ensure that the normal force cannot pull the colliders together,
we use bounds 𝜆min

n = 0 and 𝜆max
n = ∞. To model a friction cone, we

bound the other two Lagrange multipliers 𝜆+t and 𝜆+b that determine
the friction force along t̂ and b̂, respectively. We achieve this by
bounding the magnitude of the vector 𝜆𝜆𝜆+tb = [𝜆+t 𝜆+b]

𝑇 , such that
∥𝜆𝜆𝜆+tb∥ ≤ 𝜇 𝜆+n , where 𝜇 is the coefficient of friction. So, we use 𝜆min

tb =

−𝜇 𝜆+n and 𝜆max
tb = 𝜇 𝜆+n . To improve static friction accuracy further

and to prevent numerical drift, we modify our collision detection
routine such that, if on the previous time step, ∥𝜆𝜆𝜆+tb∥ ≤ 𝜇𝜆+n , we do
not allow the contact points to move along the tangent directions.
This is not required, but can give better static friction behavior when
using a lower maximum iteration count.

We can also switch between using static and dynamic friction co-
efficients, 𝜇𝑠 and 𝜇𝑑 , respectively, using the same test. If ∥𝜆𝜆𝜆+tb∥ ≤ 𝜇𝜆+n
in the previous frame, we switch to static friction with 𝜇 = 𝜇𝑠 . If
we must clamp 𝜆𝜆𝜆+tb because otherwise it would be ∥𝜆𝜆𝜆

+
tb∥ > 𝜇𝑠𝜆

+
n , we

immediately switch to dynamic friction using 𝜇 = 𝜇𝑑 .

3.4 High Stiffness Ratios
The convergence of VBD struggles with high stiffness ratios, be-
cause each step updates the position of a single mass (i.e. vertex)
only, assuming all other masses are fixed. Consider a mass that is
connected to two force elements, one of which is significantly stiffer
than the other. The stiff force corresponds to a steeper gradient,
so any incremental movement of the mass corresponds to a larger

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

Augmented Vertex Block Descent • 112.2213:5

(a) VBD
5 iterations

(b) VBD
100 iterations

(c) VBD
5 substeps

(d) VBD
30 substeps

(e) AVBD
5 iterations

Fig. 2. Simulation of 3 rigid blocks connected by 2
springs with a stiffness ratio of 10,000. The top block is
fixed and the others swing with gravity. (a) VBD results
in excessive sagging for the weak spring with 5 iterations
per frame. (b) Increasing to 100 iterations helps, but
still exhibits excessive sagging. (c) Substepping with 1
iteration per substep performs better than the same total
number of iterations per frame, but (d) still requires a
large number of substeps to reduce the error. (e) Our
AVBD method can provide a solution with low error
using only 5 iterations in total without substepping.

change in energy for the stiffer force. This is exactly why VBD itera-
tions bias the position updates towards the local solutions of the stiff
forces. This is indeed the correct strategy for locally minimizing the
energy for a mass, but it prevents forces with lower stiffness from
propagating their information globally across multiple masses. Thus,
the locally optimal solutions lead to a globally slow convergence.
This is demonstrated with a simple example in Figure 2a, using

two springs with a high stiffness ratio connecting 3 blocks. Though
both springs are sufficiently stiff to withstand the weight of the
blocks, using 5 VBD iterations leads to excessive stretching for the
weaker spring. Using 100 iterations (Figure 2b) mitigates the issue,
but the result still remains visually far from the converged solution.
One simple solution is reducing the timestep size. This can be

accomplished by replacing iterations with substeps, using the same
total computation cost. Yet, 5 substeps (Figure 2c) is insufficient in
this case and we start getting results visually close to convergence
with using 30 or more substeps (Figure 2d) in this example.

To alleviate this issue, for forces with finite stiffness, we use a
similar formulation as Equation 12 that ramps up the stiffness, but
up to the actual stiffness of the force 𝑘∗

𝑗
, such that

𝑘
(𝑛+1)
𝑗

= min
(
𝑘∗𝑗 , 𝑘

(𝑛)
𝑗
+ 𝛽 |𝐶 𝑗 (x) |

)
. (16)

Since the stiffness is always finite, we do not add the Lagrangian term
to the constraint energy and we use Equation 7 with the stiffness
variable, instead of the actual stiffness.

Similar to the augmented Lagrangian solution above, the stiffness
is increased with each iteration, based on how much the constraint
is violated, but up to the actual stiffness. This limits the stiffness ratio
acting on a mass in the earlier iterations, so the local solution for
the first iteration is no longer heavily biased toward the stiff forces.
Thus, the weaker forces get a chance to globally propagate their
information. The stiffness bound is gradually lifted, as needed, and
the local solutions correctly bias the position updates toward stiffer

forces. With this formulation, in the same example, 5 iterations
(without substeps) provides a good solution (Figure 2e).

3.5 Approximate Hessians
VBD cannot guarantee that the Hessian H𝑖 𝑗 of the force element 𝑗
acting on mass 𝑖 is always positive definite and, thereby, invertible.
In the rare cases when it is not, VBD skips updating mass 𝑖 for
that iteration, expecting that it will be positive definite in the next
iteration.

However, the Hessian can easily become indefinite for hard con-
straints modeled with augmented Lagrangian, using

H𝑖 𝑗 = 𝑘
(𝑛)
𝑗

(
𝜕𝐶 𝑗 (x)
𝜕x𝑖

)𝑇 𝜕𝐶 𝑗 (x)
𝜕x𝑖

+ G𝑖 𝑗 (17)

where G𝑖 𝑗 (x) = 𝜆+
𝑗
𝜕2𝐶 𝑗 (x)/𝜕x2𝑖 is the second derivative of the con-

straint scaled by 𝜆+
𝑗
. Here, the first term is always symmetric positive

definite, but the second term can be indefinite and non-symmetric.
We avoid this by using a diagonal approximation of the second

term based on the norm of its columns (as in Andrews et al. [2017b]).
Thus, we replace G𝑖 𝑗 in Equation 17 with the diagonal matrix
G̃𝑖 𝑗 = diag(g𝑖 𝑗), where each element 𝑔𝑖 𝑗,𝑐 of vector g𝑖 𝑗 is the norm
of vector G𝑖 𝑗,𝑐 forming column 𝑐 of G𝑖 𝑗 , such that 𝑔𝑖 𝑗,𝑐 = ∥G𝑖 𝑗,𝑐 ∥.
This guarantees that the resulting approximate Hessian is symmetric
positive definite, and that stable progress can be achieved with each
AVBD iteration. Additionally, this type of system can be solved more
accurately and efficiently using an 𝐿𝐷𝐿𝑇 decomposition, which we
use in our implementation instead of a direct inverse. This Hessian
approximation corresponds to a quasi-Newton step.

Compared to skipping the update for a vertex when the determi-
nant is small, as in the original VBD method, this approach results
in improved convergence and a reduction in artifacts for stiff forces
at low iteration bounds.

3.6 Preventing Explosive Error Correction
One important advantage of VBD is that it remains stable even when
the number of iterations per frame is limited to a small number. This
is particularly helpful for real-time graphics applications with strict
computation budgets. If the number of iterations is insufficient for
convergence, the resulting simulation can contain a large amount
of constraint error. This can manifest itself as excessive momentum,
but does not break numerical stability.
AVBD maintains this property. However, large constraint error

for hard constraints exacerbates this issue and can inject a signif-
icant amount of momentum. This is because, if a hard constraint
is violated in the previous frame (due to limited iterations), in the
very next frame the hard constraint can apply an arbitrarily large
force to enforce the constraint, resulting in a sudden motion and a
large spike in momentum. This behavior is expected, since the hard
constraints should not have been violated in the first place, but this
cannot be guaranteed when the number of iterations is bounded.
We address this by limiting the amount of position correction

that takes place in the next frame for hard constraints. This is ac-
complished using

𝐶 𝑗 (x) = 𝐶∗𝑗 (x) − 𝛼 𝐶
∗
𝑗 (x

𝑡) . (18)

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

112.2213:6 • Chris Giles, Elie Diaz, and Cem Yuksel

where 𝐶∗
𝑗
is the original constraint function and 𝛼 ∈ [0, 1] is the

regularization parameter, determining what portion of the existing
constraint error from the previous time step 𝐶∗

𝑗
(x𝑡) is ignored. We

use 𝛼 = 0.95 for all examples in this paper. Note that if 𝛼 = 1, all
pre-existing constraint error is removed, so constraint error must
be explicitly corrected using something like post stabilization.
Notice that the regularized constraint function has the same

derivatives as the original function, i.e. 𝜕𝐶 𝑗 (x)/𝜕x = 𝜕𝐶∗
𝑗
(x)/𝜕x.

Since it partially ignores the remaining error from the previous
time step, it leads to a gradual error correction over multiple steps,
thereby mitigating the momentum injection of error correction.

3.7 Warm Starting
We can use Equation 10 to reinitialize the stiffness and dual variables
every frame. To improve convergence, however, it is often helpful
to warm-start these, using the values computed at the end of the
previous time step. This way, the very first iteration uses the stiffness
and dual values needed to maintain the constraint.
Yet, notice that the update rules in Equation 12 and Equation 16

always increase the stiffness. Therefore, using the stiffness value
of the previous frame prevents the simulation from using a smaller
stiffness later on, and a high stiffness needed for a previous frame
might be unnecessary to maintain the constraint in the later frames.
That is why, we simply scale down the values computed in the

previous frame before we use them to initialize the stiffness and
dual variables for the current frame, such that

𝑘
(0)
𝑗

= max
(
𝛾 𝑘𝑡𝑗 , 𝑘start

)
and 𝜆

(0)
𝑗

= 𝛼𝛾 𝜆𝑡𝑗 (19)

where 𝑘𝑡
𝑗
and 𝜆𝑡

𝑗
are the dual parameters computed after the last

iteration of the previous frame and𝛾 ∈ [0, 1) is the scaling parameter.
We use 𝛾 = 0.99 for all examples in this paper. Note that 𝜆 is scaled
by 𝛼 , because we do not want energy introduced to correct pre-
existing constraint error to be included in warm starting, as this
would add energy to the system over time, causing instability.

For the simple example in Figure 2e, we can achieve the same
result with only a single iteration if we use warm starting.

4 IMPLEMENTATION DETAILS
We have implemented AVBD entirely on the GPU using DirectX 11
compute shaders. The pseudocode of our implementation is shown
in Algorithm 1, with portions that are new to AVBD over VBD
marked in red. For broad-phase collision detection, we build a bound-
ing volume hierarchy using the LBVH approach of [Lauterbach et al.
2009]. From there, we can build a list of pairs by traversing and
intersecting the bounding box of each object with the BVH. Once
a list of pairs is available, we perform discrete narrow-phase col-
lision detection, making sure to persist the constraint force and
stiffness variables for warm-starting purposes. One sweep of greedy
vertex coloring is then performed, followed by an initialization and
warm-starting step for all variables. Then, the main iteration begins.
For 𝑛 iterations, we solve for the primal variables (Equation 4) for
each color in parallel, followed by updating the dual variables and
stiffnesses in parallel using Equation 11 and Equation 12. Finally,
we compute the velocities for all degrees of freedom. Since we al-
ready have a BVH from the broad-phase step, we use it to perform

Algorithm 1 AVBD simulation for one time-step

1: collision detection using x
2: update colorization
3: y← x + ℎv + Δ𝑡2a𝑒𝑥𝑡
4: x← initial guess with adaptive initialization
5: 𝜆 ← 𝛼𝛾𝜆

6: k← max(𝑘start, 𝛾k)
7: for 𝑛max iterations do
8: for each color c do
9: for each vertex 𝑖 in color 𝑐 (in parallel) do
10: f𝑖 ← − M𝑖

Δ𝑡2
(x𝑖 − y𝑖)

11: H𝑖 ← M𝑖

Δ𝑡2

12: for each force 𝑗 affecting vertex 𝑖 do
13: if 𝑗 is hard constraint then
14: f𝑖 ← f𝑖 − clamp

(
𝑘 𝑗𝐶 𝑗 (x) + 𝜆 𝑗 , 𝜆𝑚𝑖𝑛

𝑗
, 𝜆𝑚𝑎𝑥

𝑗

)
𝜕𝐶 𝑗

𝜕x𝑖
15: else
16: f𝑖 ← f𝑖 − 𝑘 𝑗𝐶 𝑗 (x)

𝜕𝐶 𝑗

𝜕x𝑖
17: end if
18: H𝑖 ← H𝑖 + 𝑘 𝑗 (

𝜕𝐶 𝑗

𝜕x𝑖)
𝑇 𝜕𝐶 𝑗

𝜕x𝑖 + G
′
𝑖 𝑗

19: end for
20: x𝑛𝑒𝑤

𝑖
← x𝑖 + H−1𝑖

f𝑖
21: end for
22: for each vertex 𝑖 in color 𝑐 (in parallel) do
23: x𝑖 ← x𝑛𝑒𝑤

𝑖
24: end for
25: end for
26: for each force 𝑗 (in parallel) do
27: if 𝑗 is hard constraint then
28: 𝜆 𝑗 ← clamp

(
𝑘 𝑗𝐶 𝑗 (x) + 𝜆 𝑗 , 𝜆min

𝑗
, 𝜆max

𝑗

)
29: if 𝜆min

𝑗
< 𝜆 𝑗 < 𝜆max

𝑗
then

30: 𝑘 𝑗 ← 𝑘 𝑗 + 𝛽 |𝐶 𝑗 (x) |
31: end if
32: else
33: 𝑘 𝑗 ← min

(
𝑘∗
𝑗
, 𝑘 𝑗 + 𝛽 |𝐶 𝑗 (x) |

)
34: end if
35: end for
36: end for
37: v← (x − x𝑡)/Δ𝑡

compute shader based ray-tracing of primary, shadow, and ambient
occlusion rays for the final rendering.

Bounding the Dual Variables. In general, it is also a good idea to
bound 𝑘 (𝑛)

𝑗
and 𝜆 (𝑛)

𝑗
to some large maximum value for numerical

stability. This is typically unnecessary, but it can be important if the
simulation contains conflicting hard constraints that cannot be satis-
fied together. Thus, we prevent the stiffness values from increasing
arbitrarily by bounding the dual variables to large (but finite) values.
Note that 𝜆 (𝑛)

𝑗
can be negative, so we bound its magnitude.

Approximating Constraints. For hard constraints which are ex-
pensive to evaluate, such as collisions, we optimize the computation
of𝐶 𝑗 (x) using the first few terms of a Taylor series expansion about

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

Augmented Vertex Block Descent • 112.2213:7

the positions at the beginning of the time step x𝑡 , resulting

𝐶 𝑗 (x) ≈ (1 − 𝛼)𝐶∗𝑗 (x
𝑡) +

𝜕𝐶∗
𝑗
(x𝑡)
𝜕x

(x − x𝑡)

+ 1
2
(x − x𝑡)𝑇

𝜕2𝐶∗
𝑗
(x𝑡)

𝜕x2
(x − x𝑡).

This avoids recomputing the constraint error and its derivatives
at each iteration. We can instead compute these terms once at the
beginning of time step and cache them. For some constraints which
are linear or nearly linear, we can even drop the second order term
of this equation to no ill effect. In our implementation, we drop
this second order term for contacts, as it tends to be close to zero.
When using the Taylor series approximation, we must also use it for
approximating the derivatives of 𝐶 𝑗 when computing f𝑖 𝑗 and H𝑖 𝑗 .

Parallelization. AVBD maintains the excellent parallelization of
the original VBD method. Our approach adds only one additional
pass between iterations: the dual variable and stiffness update, which
is run for all constraints in parallel. For the primal step, like VBD,
we perform coloring such that we are able to process all masses
with the same color in parallel. In our implementation, we perform
an incremental greedy coloring once per time step, considering all
constraints, forces, and collisions. During this process, for each mass
we assign a color that is different from the colors of the connected
masses with smaller indices in a parallel Jacobi fashion. This coloring
scheme typically converges after a few iterations, where most, if not
all, masses have different colors than their connected neighbors. We
double buffer the position updates like VBD, such that in the rare
case where two masses have the same color, the solver effectively
becomes equivalent to Jacobi for those masses on that time step,
while others follow the Gauss-Seidel order. We have observed that in
some difficult cases, such as those involving a series of connections
with high stiffness ratios, randomizing the order with which the
colors are processed can improve convergence. However, we do not
randomize the order for any results presented in this paper.

Rigid Bodies. The equations we provided above are for linear de-
grees of freedom. For rigid bodies, however, we also have rotational
degrees of freedom that require special handling. Let q𝑖 = (𝑞𝑖,s, q𝑖,v)
be the quaternion representing the rotation of a rigid body, such
that 𝑞𝑖,s and q𝑖,v = (q𝑖)v are its scalar and vector components, re-
spectively. We represent x𝑖 of a rigid body 𝑖 as a combination of its
linear position p𝑖 and rotation q𝑖 . Since q𝑖 must be a unit quaternion,
x𝑖 contains 6 degrees of freedom. For using this representation with
the equations above, we define its subtraction as an operation that
produces a 6D vector using

x𝑖 − x𝑗 :=
[
p𝑖 − p𝑗
(2q𝑖q−1𝑗)v

]
. (20)

Its update Δx𝑖 = [Δp𝑖 Δw𝑖]𝑇 also contains a linear Δp𝑖 and an an-
gular Δw𝑖 component and we define the update equation as

x𝑖 + Δx𝑖 :=
[

p𝑖 + Δp𝑗
normalize

(
q𝑖 + 1

2 (0,Δw𝑖)q𝑖
)]

. (21)

Approximate Hessians. In our implementation, we always use the
approximate Hessians described in Section 3.5 with quasi-Newton

Fig. 3. Piles of 510,000 blocks smashed by two spheres, simulated
using our AVBD method with 4 iterations, taking 10.3 ms (17.6 ms
including collision detection) per frame on an NVIDIA RTX 4090 GPU.

steps. Alternatively, it is possible to use G̃𝑖 𝑗 only when the determi-
nant | det(G𝑖 𝑗) | < 𝜖 for a small 𝜖 parameter and otherwise continue
with G𝑖 𝑗 . However, in our tests we observed minor vibrations when
alternating between Newton and quasi-Newton steps without any
improvement in convergence. Also, computing the determinant for
rigid bodies (i.e. 6 × 6 matrix) incurs some performance penalty.
That is why our implementation always uses quasi-Newton steps.

5 RESULTS
We begin evaluating our AVBD method by comparing it to VBD
[Chen et al. 2024a]. Then, we add comparisons to popular dual meth-
ods: XPBD using iterations or substeps [Macklin et al. 2016; Müller
et al. 2020] and the sequential impulse method [Catto 2006]. We
first compare them in terms of animation quality and convergence
behavior. Finally, we provide performance results using large scenes
(Figure 1 and Figure 3). We use a timestep of 1/60 seconds for all
examples, with all AVBD parameters fixed. The iteration/substep
counts are noted for each example. For friction constraints, we use
the simple solution of calculating the Hessian without clamping,
instead of stiffness rescaling.

5.1 High Stiffness Ratios and High Stiffness
In Figure 4awe show amore complex example of high stiffness ratios
than in Figure 2, comparing our method to VBD. Notice that, VBD
with 5 iterations produces excessive stretching for weaker springs,
which is improved but not resolved even after 100 iterations. In
contrast, AVBD can produce a close solution to the reference after
only a single iteration. This is mainly due to our warm-start of
stiffness and dual variables (Section 3.7). The results after 5 iterations
with AVBD are visually indistinguishable from the reference.

Another example of high stiffness ratios is shown in Figure 5,
where a soft flag is attached with hard constraints to a stiffer but
deformable pole. VBD struggles to balance the stiff force of the hard
constraints with the weaker bending stiffness of the pole and the
pull of the flag. Our AVBD method, on the other hand, can produce
a reasonable animation, satisfying the hard attachment constraints
and properly bending the pole, even using 4× fewer iterations. Ob-
viously, the results improve with more iterations. Notice that the
flag pole in this example also shows that AVBD can handle long
articulated chains (of 20 bodies in this case) with few iterations.
Aside from high stiffness ratios, using high absolute stiffness

values can be detrimental to convergence of VBD. Figure 6 shows a

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

112.2213:8 • Chris Giles, Elie Diaz, and Cem Yuksel

(a) Reference

(b) AVBD, 5 iterations

(c) AVBD, 1 iteration

(d) VBD, 100 iterations

(e) VBD, 5 iterations

Fig. 4. Simulation of
10 blocks connected with
springs of alternating
stiffness with a ratio of
10,000, stretched across
2 stationary blocks on
either end. (a) The ref-
erence solution exhibits
minimal sagging, which
is matched by (b) our AVBD method using 5 iterations. (c) AVDB with
only a single iteration leads to a small amount of error for the stiff
springs. (d) VBD, in comparison, leads to overstretching even with
100 iterations and (e) using 5 iterations with VBD produces extreme
stretching for the weaker springs.

(a) VBD, 20 iterations (b) AVBD, 5 iter. (c) AVBD, 20 iter.

Fig. 5. Simulation of a flag represented as a mass-spring system
with 1,500 vertices and 6,000 springs. The flag is attached to a pole
at two points with hard constraints. The pole is formed by 20 rigid
body segments connected with ball joints and angular springs that
resist bending. The high stiffness ratio between the cloth, the pole, and
the attachment constraints causes excessive stretching of the pole in
VBD. AVBD corrects these issues even with relatively few iterations,
using augmented Lagrangian for the hard constraints forming the
attachment of the flag and the ball joints of the pole. Using more
iterations with AVBD improves the animation of the flag and the
deformation of the pole. All hard constraints are always satisfied with
low error even with low iteration limits.

delicate card tower with very lightweight bodies, requiring accurate
and stiff static friction forces to keep it standing. With the stiffness
required to keep the tower (partially) standing, the potential energy
term dominates the kinetic energy term of VBD, causing the cards
to appear heavier than they really are. In this example, relatively
heavier balls are thrown to hit the bottom of the tower, but they fail
to knock the cards down and bounce back instead. In comparison,
our AVBD method does not require high stiffness to satisfy the
constraints, thus eliminating this issue. So, a single ball hitting the
bottom easily passes through and the tower collapses.

(a) VBD (b) AVBD

Fig. 6. A card tower held by friction: (a) VBD requires carefully tuning
the contact stiffness and can still fail to preserve the structure and
generate excessive friction, (b) hard constraints of AVBD can easily
handle this case without any parameter tuning. Both methods use 5
substeps for discrete collision detection and 5 iterations per substep.

5.2 High Mass Ratios
Dual methods, on the other hand, are known to struggle with high
mass ratios. This can be seen in the comparison using a swinging
pendulum simulation, shown in Figure 7. Here, the pendulum is
formed by a long chain of 50 rigid bodies connected with ball sockets.
Our AVBDmethod is capable of maintaining attachment constraints
with minimal stretching even using low iteration counts. Despite
the high stiffness, VBD cannot prevent stretching, which is more
obvious with lower iteration counts. XPBD using substeps produces
a similar stretching, though with some instabilities in animation
due to high mass ratio, as can be seen in our supplemental video.
Using even a larger number of iterations, instead of substeps, XPBD
entirely fails to limit stretching and the pendulum hits the ground.
This is also the case with sequential impulse in this example.

We present the constraint error across frames using 20 itera-
tions/substeps with XPBD, VBD, and our AVBD method in Figure 8
for the same swinging pendulum example. Notice that AVBD con-
sistently maintains a lower constraint error and does not have the
error oscillations of XPBD. Sequential impulse is not included in
this graph, as it fails to generate a swinging motion.

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

Augmented Vertex Block Descent • 112.2213:9

(a)
AVBD
20 iter.

(b)
AVBD
5 iter.

(c)
VBD
20 iter.

(d)
VBD
5 iter.

(e)
XPBD
20 sub.

(f)
XPBD
50 iter.

(g)
Sequential Imp.

50 iterations

Fig. 7. Simulation of a pendulum formed by a chain of 50 bodies con-
nected with ball-socket constraints and a heavy object at the end with
50,000:1 mass ratio, simulated using different methods with different
numbers of iterations/sub-steps. Notice that our AVBD formulation is
the only one that can prevent excessive stretching of the chain.

XPBD, 20 substeps VBD, 20 iterations AVBD, 20 iterations

frames

co
ns

tr
ai

nt
 e

rr
or

Fig. 8. The constraint error across frames for a swinging pendulum,
using the same construction as in Figure 7.

(a) Seq. Imp.
20 iterations

(b) XPBD
20 substeps

(c) VBD
20 iterations

(d) AVBD
20 iterations

(e) AVBD
5 iterations

Fig. 9. Two heavy balls attached by a chain of 50 bodies. Primal
methods can handle the mass ratio, while dual methods quickly fail.
VBD leads to some excessive stretching, as compared to AVBD.

A more challenging example is shown in Figure 9, where two
heavy balls are joined with a chain. The dual methods (XPBD and
sequential impulse) quickly fail to maintain the constraints that hold
the chain together due to mass ratio. Primal methods handle this
test well, though VBD leads to excessive stretching, but our AVBD
method can use hard constraints to preserve the chain length.

Problems regarding mass ratios with dual methods are also appar-
ent in Figure 10. Notice that the block at the bottom is completely
crushed with sequential impulse, while our AVBD method can prop-
erly maintain the collision constraints in this example.

(a) Sequential Impulse, 20 iterations (b) AVBD, 20 iterations

Fig. 10. Simulation of a stack of boxes. (a) The bottom of the stack
collapses with sequential impulse. (b) AVBD maintains the stack.

(a) Sequential Impulse, 4 iterations (b) AVBD, 4 iterations

Fig. 11. Blocks of different friction coefficient with the same initial
velocity, sliding on the ground until they stop, showing that (a) sequen-
tial impulse and (b) AVBD produce visually identical friction behavior.

5.3 Friction
On the other hand, sequential impulse can accurately model the be-
havior of different friction coefficients. Figure 11 shows that AVBD
can match the same friction behavior as sequential impulse. Unlike
our other examples, where using stiffness rescaling (Equation 14)
instead of our simple solution of calculating the Hessian without
clamping makes no noticeable improvement, stiffness rescaling im-
proves convergence in this test, allowing us to match the behavior
of Sequential Impulse using only a single AVBD iteration (instead
of the 4 iterations used in Figure 11).

5.4 Complex Collisions and Constraints
Figure 12 shows a challenging collision case, where a heavy ball
is dropped on a chain mail. With sequential impulse, the ball goes
through the chain mail, as the collision constraints cannot over-
come the momentum of the ball. XPBD with substeps can maintain
the integrity of the chain mail near the collision with the ball, but
the contacts at the corners fail. These same contacts at the corners
also fail with VBD, but even before the ball touches the chain mail,
this is because the quadratic energy potential cannot produce large
enough forces for those contacts. Our AVBD formulation success-
fully handles this case without any visual artifacts, maintaining all
contacts using hard constraints.

Figure 13 shows a simplified wall break simulation, where three
balls with high momentum smash into a brick wall. The bricks
are attached via breakable hard constraints with a maximum force
threshold. In this example, sequential impulse generates a clean

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

112.2213:10 • Chris Giles, Elie Diaz, and Cem Yuksel

(a) Sequential Impulse, 15 iterations (b) XPBD, 15 substeps

(c) VBD, 15 iterations (d) AVBD, 15 iterations

Fig. 12. A heavy ball dropping on a chain mail. Aside form AVBD,
all other methods fail to properly resolve the collisions. All methods
use 15 iterations/substeps in this test.

(a) Sequential Impulse, 20 iterations (b) XPBD, 20 substeps

(c) VBD, 20 iterations (d) AVBD, 20 iterations

Fig. 13. A wall constructed using bricks that are joined via breakable
attachment constraints, smashed by three balls with high momentum.
The dual methods fail to maintain the constraints, resulting in bending
artifacts and unnatural fracture. VBD bends, but does not break the
wall. Our AVBD method produces plausible breaks.

fracture at first, but it cannot maintain the constraints and the dis-
turbance of the initial fractures makes the wall slowly bend and
finally collapse. XPBD also struggles to maintain the constraints
after the collision and its inaccuracies makes the wall tear at unnat-
ural places, producing a rubbery behavior. VBD, on the other hand,
entirely prevents fracture, but bends the wall instead, smoothly
distributing the constraint error. Our AVBD method forms clean

Fig. 14. 35,000 rigid bodies connected with 72,000 joints falling onto
a cloth with 10,000 vertices (20,000 triangles), simulated using AVBD
with 10 iterations in 16 ms per frame.

wall breaks with plausible fractures and successfully maintains the
attachment constrains that are retained after the initial impacts.

Figure 14 shows a complex example involving a large deformable
cloth and articulated rigid bodies falling onto it, where all joints,
collision constraints, and cloth forces are solved in a unified fashion
using our augmented Lagrangian formulation. Our AVBD method
can efficiently simulate this scene, simulated here with 10 iterations
taking 16 ms per frame including collision detection.

5.5 Performance
The computational cost of all of thesemethods scale linearly with the
number of iterations/substeps used. The cost of each iteration scales
linearly with the number of bodies for primal methods (VBD and
AVBD) and with the number of forces/constraints for dual methods
(XPBD and sequential impulse). Most of the computation time is
used by iterating over bodies/constraints with a minor overhead for
coloring and synchronization.

Table 1. Solver performance of different methods in our large scenes.

Seq. Imp. XPBD VBD AVBD
Figure 1 15 iter. 6 sub. 15 iter. 4 iter.
110,000 bodies 14.1 ms 19.5 ms 10.8 ms 3.5 ms
Figure 3 27 iter. 26 sub. 8 iter. 3 iter.
510,000 bodies 78.4 ms 524.7 ms 26.5 ms 10.3 ms

We provide a performance comparison using our large scenes
in Table 1. Here, the performance differences between methods
is mainly due to the number of iterations used. In Figure 1 and
Figure 3, our AVBDmethod can produce stable simulationswith only
4 and 3 iterations, respectively. Other methods, however, require
more iterations/substeps just to prevent the piles of blocks from
collapsing with gravity. As a result, they require significantly longer
simulation times. In particular, the scene in Figure 3 turned out to
be a challenging case for XPBD and even with 26 substeps the piles
of blocks were collapsing after several seconds in our tests. Thus,
the stability of the simulation is a primary factor in determining its
relative performance.

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

Augmented Vertex Block Descent • 112.2213:11

Table 2. Parameters used in our formulation of AVBD.

Range Used Reference Description
𝛽 (0,∞) 10 Equation 12 Stiffness ramping control-

ling convergence rate
𝛼 [0, 1] 0.95 Equation 18 Regularization to prevent

explosive error correction
𝛾 [0, 1) 0.99 Equation 19 Warm starting of stiffness

and dual variables

time

0-

0-

0-

0-

po
si

tio
n

iterations 2
5
10
20

ɣ 0
0.25
0.75
0.99

α 0
0.75
0.95
1

β 1
10
100
1000

Fig. 15. The effect of different parameter values. The pendulum in
Figure 7a is initialized in the vertical pose shown and the vertical
position of the heavy ball is recorded over time with different parameter
values, using the default values in Table 2 with 20 iterations by default.

5.6 Parameter Tests
Our formulation of AVBD relies on a number of user-defined param-
eters, shown in Table 2. Though none of these parameters require
careful tuning, they can impact the behavior of the solver. Yet, with
simple examples, it is difficult to see any behavioral change with dif-
ferent parameters, and complex animations obfuscate their impact.
Therefore, below we discuss these parameters using a relatively
challenging quasi-static pendulum example shown in Figure 7a,
involving 50 rigid links, forming a chain that holds a heavy ball.
The pendulum is initialized in this vertical pose, and the vertical
position of the ball is tracked over time, using different parameters.
The results are shown in Figure 15. The corresponding animation
sequences are included in our supplemental video.

The 𝛽 parameter controls how quickly the stiffness is ramped up
using Equation 12. It makes little difference in a quasi-static case
using warm starting. Larger values can improve convergence, but
can also lead to excessive stiffness. When 𝛽 is too small, it takes a
number of frames to build up sufficient stiffness and dual variable.

The 𝛼 parameter controls the portion of accumulated constraint
error from prior frames to be corrected in the current frame. 𝛼 = 0
results in explosive error correction, effectively turning off our

prevention mechanism (see Section 3.6). Using larger values for 𝛼
avoids this instability by reducing the energy injection due to error
correction. 𝛼 = 1 removes all existing constraint error and only
attempts to prevent new error, and so constraint error gradually
accumulates as the simulation proceeds. Post stabilization could be
applied to correct the error with this configuration.
The 𝛾 parameter controls how much of the previous frame’s

stiffness and dual variable to use for warm starting. 𝛾 = 0 results in
poor convergence, since it effectively disables warm starting, and
every frame must recompute the stiffness and dual variables from
scratch. In this example, the chain fails to accumulate sufficient
tension (using the default values for the other parameters), and the
ball hits the ground. Larger values for 𝛾 improve convergence. Yet,
𝛾 = 1 is not a valid configuration, since this would never allow the
stiffness value to decrease.
It is important to note that regardless of the choices of 𝛾 and

𝛽 , with enough iterations, the simulation converges towards zero
constraint error. This is unlike VBD, where the chosen stiffness
value determines how stiff the constraints will be. In this test, using
the default values, even with a small number of iterations per frame,
convergence can be achieved after a number frames.
We do not discuss the 𝑘start parameter here, because even in this

relatively complex test case, it makes no visible difference. In fact, in
this case, it virtually has no impact, except for the very first iteration
of the very first frame.

6 DISCUSSION
The main tunable parameter of our approach is 𝛽 used to control
how quickly stiffness is ramped up. It is worth pointing out that this
parameter does not affect the converged result, only how quickly
convergence is achieved. This is due to the augmented Lagrangian
term, which converges to the same constraint forces as the Lagrange
multipliers of the dual formulations like XPBD, regardless of the
stiffness value. Indeed, one could use a fixed stiffness value and still
converge to the correct result given enough iterations.
Position based methods, including our work, inject energy into

the system to correct constraint error. The amount of energy added
increases as the time-step decreases. This motivates our approach
of subtracting some of the initial constraint error which exists at
the start of the step, in order to spread out the error correction over
several frames. This can be viewed as a Baumgarte stabilization like
approach, as it adds a small amount of energy to correct positional
error, depending on the value of 𝛼 .
If it is desired to add zero additional energy, we could use post

stabilization [Cline and Pai 2003]. In our framework, this involves
first solving using 𝛼 = 1, such that no existing position error is
corrected for, then performing a second post stabilization solve using
𝛼 = 0, and leaving out the velocity update at the end of the solve.
This can improve stability, however it adds a small performance
cost due to the extra solve. Therefore, we opt for the more efficient
Baumgarte stabilization like approach for all our examples.

Depending on the scene complexity, collision detection can take
close to or even longer than the simulation step. For example, our
collision detection implementation takes about 6.3ms in Figure 1 and
7.2 ms in Figure 3. Modern GPUs contain hardware specifically for

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

112.2213:12 • Chris Giles, Elie Diaz, and Cem Yuksel

ray tracing and construction of spatial acceleration data structures.
Unfortunately, the APIs currently only allow intersecting rays with
these structures. If they were to provide the ability to intersect
these structures with a bounding box, or get the closest triangle to
a query point, we could massively accelerate the broad-phase and
narrow-phase collision detection steps.
One fundamental limitation of local iterative techniques like

AVBD is information propagation (ie. forces) across constraints is
limited by the number of iterations. This can be noticeable with very
large mechanisms and chains of bodies with low iteration counts.
Though we demonstrated long chains in our examples, propagation
can take multiple frames. It would be interesting to explore combin-
ing AVBD with a global solver. Also, as AVBD uses backwards Euler
integration (BDF1), there is naturally some energy dissipation with
higher time steps. Investigation into higher order integrators like
BDF2 would also be interesting future work.

7 CONCLUSION
We have introduced Augmented-VBD that extends the VBD method
with an augmented Lagrangian formulation to provide a mecha-
nism for handling hard constraints. Using these hard constraints,
we have also described methods for efficiently modeling inequality
constraints and frictional contacts and we have shown that we can
produce the expected behavior for a range of friction coefficients.
Motivated by our formulation of hard constraints, we have presented
a simple technique that can overcome arguably one of the biggest
limitations of VBD: simulating high stiffness ratios. Finally, we have
presented methods for improving stability by approximating Hes-
sians and avoiding explosive error correction. Our experiments
show that AVBD delivers improved animation quality, superior per-
formance, and better stability as compared to alternative methods,
and that it is able to handle complex scenes involving stacking, fric-
tional contact, and other hard constraints using a limited number
of iterations per frame.

REFERENCES
Sheldon Andrews, Marek Teichmann, and Paul G. Kry. 2017a. Geometric Stiffness for

Real-time Constrained Multibody Dynamics. Computer Graphics Forum 36, 2 (2017),
235–246. https://doi.org/10.1111/cgf.13122

Sheldon Andrews, Marek Teichmann, and Paul G. Kry. 2017b. Geometric Stiffness for
Real-time Constrained Multibody Dynamics. Computer Graphics Forum 36, 2 (2017).
https://doi.org/10.1111/cgf.13122

David Baraff. 1997. An Introduction to Physically Based Modeling: Rigid Body Simulation
I—Unconstrained Rigid Body Dynamics. Technical Report CMU-RI-TR-97-13. Robotics
Institute, Carnegie Mellon University. Available at https://www.cs.cmu.edu/~baraff/
sigcourse/notesd1.pdf.

David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. (1998).
E G Birgin and J M Martínez. 2014. Practical augmented Lagrangian methods for con-

strained optimization. Society for Industrial and Applied Mathematics, Philadelphia,
PA.

Erin Catto. 2006. Fast and Simple Physics using Sequential Impulses. In Proceedings
of the Game Developers Conference. Available at https://box2d.org/files/ErinCatto_
SequentialImpulses_GDC2006.pdf.

Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel. 2024a. Vertex Block Descent.
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2024) 43, 4, Article 116 (07
2024), 16 pages. https://doi.org/10.1145/3658179

Yi-Lu Chen, Mickaël Ly, and ChrisWojtan. 2024b. Primal–Dual Non-Smooth Friction for
Rigid Body Animation. In SIGGRAPH 2024 Conference Papers. Association for Com-
puting Machinery, New York, NY, USA. https://doi.org/10.1145/3641519.3657485

M.B. Cline and D.K. Pai. 2003. Post-stabilization for rigid body simulation with contact
and constraints. In Proceedings of the IEEE International Conference on Robotics and
Automation. 3744–3751. https://doi.org/10.1109/ROBOT.2003.1242171

M. Fratarcangeli and F. Pellacini. 2015. Scalable Partitioning for Parallel Position
Based Dynamics. Computer Graphics Forum 34, 2 (May 2015), 405–413. https:
//doi.org/10.1111/cgf.12570

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: a practical
gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics
35, 6 (Nov. 2016), 1–9. https://doi.org/10.1145/2980179.2982437

Chris Giles and Sheldon Andrews. 2024. Adaptive Sub-stepping for Constrained Rigid
Body Simulations. In Proceedings of the 17th ACM SIGGRAPH Conference on Motion,
Interaction, and Games (Arlington, VA, USA) (MIG ’24). https://doi.org/10.1145/
3677388.3696331

Dewen Guo, Minchen Li, Yin Yang, Sheng Li, and Guoping Wang. 2024. Barrier-
Augmented Lagrangian for GPU-based Elastodynamic Contact. ACM Trans. Graph.
43, 6, Article 225 (Nov. 2024), 17 pages. https://doi.org/10.1145/3687988

G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs. 2001. An implicit finite element
method for elastic solids in contact. In Proceedings Computer Animation 2001. Four-
teenth Conference on Computer Animation (Cat. No.01TH8596). IEEE Comput. Soc,
Seoul, South Korea, 136–254. https://doi.org/10.1109/CA.2001.982387

C. Kane, J. E. Marsden, and M. Ortiz. 1999. Symplectic-energy-momentum preserving
variational integrators. J. Math. Phys. 40, 7 (July 1999), 3353–3371. https://doi.org/
10.1063/1.532892

Couro Kane, Jerrold E Marsden, Michael Ortiz, and Matthew West. 2000. Variational
integrators and the Newmark algorithm for conservative and dissipative mechanical
systems. International Journal for numerical methods in engineering 49, 10 (2000),
1295–1325.

Liliya Kharevych, Weiwei Yang, Yiying Tong, Eva Kanso, Jerrold E. Marsden, Peter
Schröder, and Matthieu Desbrun. 2006. Geometric, Variational Integrators for Com-
puter Animation. In ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, Marie-Paule Cani and James O’Brien (Eds.). The Eurographics Association.
https://doi.org/10.2312/SCA/SCA06/043-051

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022. Affine
Body Dynamics: Fast, Stable & Intersection-free Simulation of Stiff Materials. ACM
Transactions on Graphics (TOG) 41, 4 (2022), 67:1–67:14. https://doi.org/10.1145/
3528223.3530064

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and
Dinesh Manocha. 2009. Fast BVH Construction on GPUs. Computer Graphics Forum
28, 2 (2009), 375–384. https://doi.org/10.1111/j.1467-8659.2009.01377.x

A. Lew, J. E. Marsden, M. Ortiz, and M.West. 2004. Variational time integrators. Internat.
J. Numer. Methods Engrg. 60, 1 (May 2004), 153–212. https://doi.org/10.1002/nme.958

M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T.Y.
Kim. 2020. Primal/Dual Descent Methods for Dynamics. Computer
Graphics Forum 39, 8 (2020), 89–100. https://doi.org/10.1111/cgf.14104
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14104

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-
based simulation of compliant constrained dynamics. In Proceedings of the 9th
International Conference on Motion in Games. ACM, Burlingame California, 49–54.
https://doi.org/10.1145/2994258.2994272

Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan
Jeschke, and Matthias Müller. 2019. Small Steps in Physics Simulation. In Proceedings
of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
1–7. https://doi.org/10.1145/3309486.3340247

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. In ACM SIGGRAPH 2011 papers. 1–8.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong
Kim. 2020. Detailed Rigid Body Simulation with Extended Position Based Dynam-
ics. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer
Animation (SCA). 101–112. https://doi.org/10.1111/cgf.14105

J.C. Simo, N. Tarnow, and K.K. Wong. 1992. Exact energy-momentum conserving
algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in
Applied Mechanics and Engineering 100, 1 (Oct. 1992), 63–116. https://doi.org/10.
1016/0045-7825(92)90115-Z

Quoc-Minh Ton-That, Paul G. Kry, and Sheldon Andrews. 2023. Parallel block Neo-
Hookean XPBD using graph clustering. Computers & Graphics 110 (Feb. 2023), 1–10.
https://doi.org/10.1016/j.cag.2022.10.009

P. Volino and N. Magnenat-Thalmann. 2001. Comparing efficiency of integration
methods for cloth simulation. In Proceedings. Computer Graphics International 2001.
IEEE Comput. Soc, Hong Kong, China, 265–272. https://doi.org/10.1109/CGI.2001.
934683

ACM Trans. Graph., Vol. 44, No. 4, Article 112.2213. Publication date: August 2025.

https://doi.org/10.1111/cgf.13122
https://doi.org/10.1111/cgf.13122
https://www.cs.cmu.edu/~baraff/sigcourse/notesd1.pdf
https://www.cs.cmu.edu/~baraff/sigcourse/notesd1.pdf
https://box2d.org/files/ErinCatto_SequentialImpulses_GDC2006.pdf
https://box2d.org/files/ErinCatto_SequentialImpulses_GDC2006.pdf
https://doi.org/10.1145/3658179
https://doi.org/10.1145/3641519.3657485
https://doi.org/10.1109/ROBOT.2003.1242171
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1145/2980179.2982437
https://doi.org/10.1145/3677388.3696331
https://doi.org/10.1145/3677388.3696331
https://doi.org/10.1145/3687988
https://doi.org/10.1109/CA.2001.982387
https://doi.org/10.1063/1.532892
https://doi.org/10.1063/1.532892
https://doi.org/10.2312/SCA/SCA06/043-051
https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1145/3528223.3530064
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1002/nme.958
https://doi.org/10.1111/cgf.14104
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14104
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1111/cgf.14105
https://doi.org/10.1016/0045-7825(92)90115-Z
https://doi.org/10.1016/0045-7825(92)90115-Z
https://doi.org/10.1016/j.cag.2022.10.009
https://doi.org/10.1109/CGI.2001.934683
https://doi.org/10.1109/CGI.2001.934683

	Abstract
	1 Introduction
	2 Background
	2.1 Prior Work
	2.2 Vertex Block Descent

	3 VBD with Augmented Lagrangian
	3.1 Hard Constraints
	3.2 Inequality Constraints
	3.3 Frictional Contacts
	3.4 High Stiffness Ratios
	3.5 Approximate Hessians
	3.6 Preventing Explosive Error Correction
	3.7 Warm Starting

	4 Implementation Details
	5 Results
	5.1 High Stiffness Ratios and High Stiffness
	5.2 High Mass Ratios
	5.3 Friction
	5.4 Complex Collisions and Constraints
	5.5 Performance
	5.6 Parameter Tests

	6 Discussion
	7 Conclusion
	References

