
Crazy Fast Physics! Augmented Vertex Block Descent in Action!
Chris Giles
Independent

San Mateo, CA, USA
cgiles17@gmail.com

Elie Diaz
University of Utah

Salt Lake City, UT, USA
elie.diaz@utah.edu

Cem Yuksel
University of Utah

Salt Lake City, UT, USA
cem@cemyuksel.com

Figure 1: Augmented vertex block descent allows faster physics simulations than ever before! It offers an efficient way of handling hard constraints,
which is critical for simulating contacts and stacking. In this example, a sphere smashes a pile of 110,000 blocks, simulated using only 4 iterations
per frame, though the pile has 40 levels! It is balanced by frictional contacts alone, so the whole structure begins to collapse after the initial impact.
It only takes 3.5 ms (9.8 ms including collision detection) per frame to fully simulate this scene on an NVIDIA RTX 4090 GPU.

ACM Reference Format:
Chris Giles, Elie Diaz, and Cem Yuksel. 2025. Crazy Fast Physics! Augmented
Vertex Block Descent in Action!. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Real-Time Live! (SIGGRAPH
Real-Time Live! ’25), August 10–14, 2025, Vancouver, BC, Canada. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3721243.3735982

1 Introduction
We demonstrate the power of the Augmented Vertex Block Descent
(AVBD) [Giles et al. 2025] method for physics simulation with un-
precedented performance. AVBD is designed to handle a large num-
ber of objects (or degrees of freedom) connected with various con-
straints, including articulated joints, complex collisions, friction,
and stacking. It not only delivers unconditional numerical stabil-
ity but also superior computational performance and substantially
improved numerical accuracy, as compared to prior methods.

AVBD extends the vertex block descent (VBD) [Chen et al. 2024]
method, which presented superior performance than prior methods
and unconditional stability in the context of soft body simulation.
Our Augmented VBD method includes an Augmented Lagrangian
formulation for handling hard constraints with VBD. These hard
constraints are essential for properly handling contacts and stacking
scenarios, which are essential for rigid-body simulations.

Our demos include large scenes with over a million objects, inter-
acting with each other via joint constraints and frictional contacts,
all simulated via AVBD at real-time frame rates on the GPU.We also
show scenes that include long articulated chains and objects with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Real-Time Live! ’25, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1545-7/25/08
https://doi.org/10.1145/3721243.3735982

large mass ratios interacting with each other, which are particularly
challenging cases to simulate using prior methods.

2 Vertex Block Descent
VBD provides an efficient and numerically stable solution for an
optimization problem that provides the solution of an implicit Euler
time integration. More specifically, VBD solves the variational form
of implicit Euler via position updates. VBD computes the positions
at the end of the time step x𝑡+Δ𝑡 by solving

x𝑡+Δ𝑡 = argmin
x

1
2Δ𝑡2

∥x − y∥2𝑀 + 𝐸 (x) , (1)

where Δ𝑡 is the timestep size, y is the inertial positions, ∥·∥𝑀 rep-
resent mass-weighted norm, and 𝐸 (x) is the total potential energy
evaluated at positions x. The inertial positions y are calculated
using the positions x𝑡 and velocities v𝑡 at the beginning of the
timestep, such that

y = x𝑡 + Δ𝑡v𝑡 + Δ𝑡2aext , (2)

where aext represent the external acceleration, such as gravity. The
total potential energy 𝐸 (x) is the sum of the energies of all force
elements, including material deformations and collisions.

VBD solves this optimization problem using Gauss-Seidel itera-
tions. Each iteration, updates x by modifying the position x𝑖 of one
vertex 𝑖 at a time, keeping all other vertices of a deformable object
fixed at their latest positions. When no other vertex moves, the
minimization in Equation 1 is equivalent to a local minimization
that only modifies x𝑖 , such that

x𝑖 ← argmin
x𝑖

1
2Δ𝑡2

∥x𝑖 − y𝑖 ∥2M𝑖
+

∑︁
𝑗∈F𝑖

𝐸 𝑗 (x) , (3)

whereM𝑖 is the mass matrix and 𝐸 𝑗 is the energy of a force element
𝑗 in the set F𝑖 of all force elements that use x𝑖 . All other force
elements can be ignored here, since all other vertex positions are
fixed while updating the position x𝑖 .

https://orcid.org/0009-0009-1502-3487
https://orcid.org/0009-0002-9493-1684
https://orcid.org/0000-0002-0122-4159
https://doi.org/10.1145/3721243.3735982
https://doi.org/10.1145/3721243.3735982

SIGGRAPH Real-Time Live! ’25, August 10–14, 2025, Vancouver, BC, Canada Chris Giles, Elie Diaz, and Cem Yuksel

VBD solves Equation 3 using a single Newton iteration, which
corresponds to solving the linear system

H𝑖 Δx𝑖 = f𝑖 , (4)

where Δ𝑥𝑖 is the position change between iterations, f𝑖 is the force

f𝑖 = −
1
Δ𝑡2

M𝑖 (x𝑖 − y𝑖) +
∑︁
𝐽 ∈F𝑖

f𝑖 𝑗 , (5)

calculated using f𝑖 𝑗 = −𝜕𝐸 𝑗 (x)/𝜕x𝑖 , and H𝑖 is the Hessian

H𝑖 =
M𝑖

Δ𝑡2
+

∑︁
𝐽 ∈F𝑖

H𝑖 𝑗 , (6)

such that H𝑖 𝑗 = 𝜕2𝐸 𝑗 (𝑥)/𝜕x2𝑖 is the Hessian of each force element
𝑗 acting on vertex 𝑖 .

Since vertices have 3 degrees of freedom (DOF),H𝑖 andM𝑖 =𝑚𝑖 I
are 3 × 3 matrices, where𝑚𝑖 is the mass of the vertex and I is the
identity matrix. The same goes for simulating particles with 3 DOF.

When simulating rigid bodies with 6 DOF, x𝑖 = [p𝑖 q𝑖,v]𝑇 in-
cludes both the positions p𝑖 and quaternions q𝑖 = (𝑞𝑖,s, q𝑖,v) that
represent the orientations, where 𝑞𝑖,s and q𝑖,v are the scalar and
vector components. Since q𝑖 is a unit quaternion, 𝑞𝑖,s can be safely
omitted and the 6D subtraction operation can be defined as

x𝑖 − x𝑗 :=
[
p𝑖 − p𝑗
(2q𝑖q−1𝑗)v

]
. (7)

In this case, H𝑖 andM𝑖 are 6 × 6 matrices, such that

M𝑖 =

[
𝑚𝑖 I 0
0 I𝑖

]
, (8)

where the 3 × 3 matrices I, 0, and I𝑖 represent the identity matrix,
zero matrix, and the rotated moment of the rigid body, respec-
tively. Similarly, Δx𝑖 = [Δp𝑖 Δw𝑖]𝑇 contains a position Δp𝑖 and an
orientation Δw𝑖 component and the resulting update is defined as

x𝑖 + Δx𝑖 :=
[

p𝑖 + Δp𝑗
normalize

(
q𝑖 + 1

2 (0,Δw𝑖)q𝑖
)]

. (9)

3 Augmented Vertex Block Descent
In VBD, constraints can be modeled by a quadratic energy potential

𝐸 𝑗 (x) =
1
2
𝑘 𝑗

(
𝐶 𝑗 (x)

)2
, (10)

where 𝑘 𝑗 and 𝐶 𝑗 are the stiffness and the constraint error for con-
straint 𝑗 , respectively. However, this does not work for hard con-
straints with infinite stiffness. Therefore, AVBD uses augmented
Lagrangian to represent the energy for each iteration 𝑛 as

𝐸 𝑗 (x) =
1
2
𝑘
(𝑛)
𝑗

(
𝐶 𝑗 (x)

)2
+ 𝜆 (𝑛)

𝑗
𝐶 𝑗 (x) , (11)

where 𝑘 (𝑛)
𝑗

is the finite stiffness and 𝜆 (𝑛)
𝑗

the dual variable of the
constraint, which are updated after each iteration, starting with

𝑘
(0)
𝑗

= 𝑘start and 𝜆
(0)
𝑗

= 0 , (12)

where 𝑘start > 0 is an initial stiffness parameter, and using

𝜆
(𝑛+1)
𝑗

= 𝑘
(𝑛)
𝑗

𝐶 𝑗 (x) + 𝜆 (𝑛)𝑗
(13)

𝑘
(𝑛+1)
𝑗

= 𝑘
(𝑛)
𝑗
+ 𝛽 |𝐶 𝑗 (x) | , (14)

where 𝛽 is a parameter that controls the stiffness increment rate.

Figure 2: 510,000 blocks smashed by two spheres, simulated with
AVBD using 4 iterations per frame (10.3 ms on NVIDIA RTX 4090).

Using hard constrains, the Hessian H𝑖 can easily become non-
invertible. To avoid this, AVBD approximates the Hessians using

H𝑖 𝑗 ≈ 𝑘 (𝑛)𝑗

(
𝜕𝐶 𝑗 (x)
𝜕x𝑖

)𝑇 𝜕𝐶 𝑗 (x)
𝜕x𝑖

+ G̃𝑖 𝑗 (15)

where the second term G̃𝑖 𝑗 is a diagonal matrix that approximates

G𝑖 𝑗 (x) =
(
𝑘
(𝑛)
𝑗

𝐶 𝑗 (x) + 𝜆 (𝑛)𝑗

) 𝜕2𝐶 𝑗 (x)
𝜕x2

𝑖

, (16)

such that each diagonal element𝑔𝑖 𝑗,𝑐 of G̃𝑖 𝑗 is the norm of the vector
G𝑖 𝑗,𝑐 that forms the column 𝑐 of G𝑖 𝑗 , such that 𝑔𝑖 𝑗,𝑐 = ∥G𝑖 𝑗,𝑐 ∥.

In real-time simulations, it is typical to use a limited number
of iterations, instead of iterating until the constraint error is re-
moved. Unfortunately, with hard constraints, the resulting error
can inject an arbitrary amount of energy into the system due to po-
sition correction. AVBD limits this using𝐶 𝑗 (x) = 𝐶∗

𝑗
(x) − 𝛼 𝐶∗

𝑗
(x𝑡),

where 𝐶∗
𝑗
is the original constraint function and 𝛼 ∈ [0, 1] is the

user-specified regularization parameter.
The convergence rate of AVBD can be significantly improved by

warm starting the stiffness and dual variables using

𝑘
(0)
𝑗

= max
(
𝛾 𝑘𝑡𝑗 , 𝑘start

)
and 𝜆

(0)
𝑗

= 𝛼𝛾 𝜆𝑡𝑗 (17)

where 𝑘𝑡
𝑗
and 𝜆𝑡

𝑗
are the ones computed after the last iteration of

the previous frame, and 𝛾 ∈ [0, 1) is the scaling parameter.
The user-defined parameters of AVBD do not need to be fine-

tuned. We use 𝛼 = 0.95, 𝛽 = 10, and 𝛾 = 0.99 for all examples.

4 Conclusion
AVBD offers real-time physics simulation with an unprecedented
level of performance (Figures 1 & 2). It inherits the unconditional
stability and the parallel computing power of VBD. It allows ex-
treme mass variations and, unlike VBD, it can handle extreme stiff-
ness ratios. AVBD’s formulation is essential for properly resolving
frictional contacts and stacking, in addition to simulations of ar-
ticulated objects with arbitrary joints and attachment constraints.
Most notably, AVBD can simulate stable stacking of large piles and
long articulated chains with only a few iterations per frame.

References
Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel. 2024. Vertex Block Descent.

ACM Transactions on Graphics (Proceedings of SIGGRAPH 2024) 43, 4, Article 116
(07 2024), 16 pages. doi:10.1145/3658179

Chris Giles, Elie Diaz, and Cem Yuksel. 2025. Augmented Vertex Block Descent. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2025) 44, 4 (08 2025), 12 pages.
doi:10.1145/3731195

https://doi.org/10.1145/3658179
https://doi.org/10.1145/3731195

	1 Introduction
	2 Vertex Block Descent
	3 Augmented Vertex Block Descent
	4 Conclusion
	References

