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S.1 DERIVATION OF RESAMPLING MIS WEIGHTS
In this section we first derive the generalized Talbot MIS (Equa-
tion 36) and Pairwise MIS (Equation 37, Equation 38) weights from
the requirement that the resampling weights 𝑤𝑖 given by Equa-
tion 19 must have a finite upper bound.

We then derive the upper bounds for the resampling weights𝑤𝑖

with the above MIS weights schemes, and for variants of the MIS
weights that use tractable PDFs 𝑝𝑖 instead of 𝑝𝑖 .

We assume that of the𝑀 input samples𝑋𝑖 , indices in the set 𝑅 are
canonical (Definition 5.2), i.e., their domain is Ω, the shift mapping
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is identity, and the target density 𝑝𝑖 = 𝑝 . The number of canonical
samples is denoted |𝑅 |.

S.1.1 Generalizing Talbot MIS Weights
We first require that the resampling weights stay bounded, and
derive MIS weights𝑚𝑖 that fulfill this condition. Denote 𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 )
and assume that 𝑌𝑖 ∈ 𝑇𝑖 (supp𝑋𝑖 ). The resampling weight of 𝑋𝑖 is
then, by Equation 19,

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) · 𝑝 (𝑌𝑖 )𝑊𝑖 ·
���� 𝜕𝑌𝑖𝜕𝑋𝑖

���� . (S.1)

Assuming that 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 ≤ 𝐶𝑖 , we can bound the above as

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) ·
𝑝 (𝑌𝑖 )𝑝𝑖 (𝑋𝑖 )𝑊𝑖

𝑝𝑖 (𝑋𝑖 )
·
���� 𝜕𝑌𝑖𝜕𝑋𝑖

���� (S.2)

≤ 𝑚𝑖 (𝑌𝑖 ) ·
𝑝 (𝑌𝑖 )𝐶𝑖
𝑝𝑖 (𝑋𝑖 )

·
���� 𝜕𝑌𝑖𝜕𝑋𝑖

���� . (S.3)

We require this to be at most some 𝐶𝑖 , which we may choose freely
as long as we still find suitable functions𝑚𝑖 . Then, 𝑤𝑖 ≤ 𝐶𝑖 will
also hold:

𝑤𝑖 ≤ 𝑚𝑖 (𝑌𝑖 ) ·
𝑝 (𝑌𝑖 )𝐶𝑖
𝑝𝑖 (𝑋𝑖 )

·
���� 𝜕𝑌𝑖𝜕𝑋𝑖

���� ≤ 𝐶𝑖 . (S.4)

The latter inequality is equivalent to

𝑚𝑖 (𝑌𝑖 ) ≤
𝐶𝑖

𝐶𝑖

𝑝𝑖 (𝑋𝑖 )
��� 𝜕𝑌𝑖𝜕𝑋𝑖

���−1

𝑝 (𝑌𝑖 )
. (S.5)

We observe that if 𝑗 is any canonical index, then we have 𝑝 (𝑌𝑖 ) =

𝑝 𝑗 (𝑇−1
𝑗
(𝑌𝑖 ))

���� 𝜕𝑇 −1
𝑗

𝜕𝑌𝑖

����, and the numerator and denominator begin to

look similar:

𝑚𝑖 (𝑌𝑖 ) ≤
𝐶𝑖

𝐶𝑖

𝑝𝑖
(
𝑇−1
𝑖
(𝑌𝑖 )

) ���� 𝜕𝑇 −1
𝑖

𝜕𝑌𝑖

����
𝑝 𝑗 (𝑇−1

𝑗
(𝑌𝑖 ))

���� 𝜕𝑇 −1
𝑗

𝜕𝑌𝑖

���� =
𝐶𝑖

𝐶𝑖

𝑝←𝑖 (𝑌𝑖 )
𝑝←𝑗 (𝑌𝑖 )

. (S.6)

Writing the expressions in terms of 𝑝←𝑖 and 𝑝←𝑗 is justified since
𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 ) was sampled (hence 𝑌𝑖 ∈ 𝑇𝑖 (supp𝑋𝑖 )), which implies
𝑌𝑖 ∈ supp𝑝. Since 𝑗 is a canonical index, supp𝑝 ⊂ supp𝑋 𝑗 =

supp𝑇𝑗 (supp𝑋 𝑗 ), and hence 𝑌𝑖 ∈ supp𝑇𝑗 (𝑋 𝑗 ).
If𝑚𝑖 is such that it fulfills the above inequality but with a larger

denominator, it will also fulfill the above inequality. We make the
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denominator of 𝑚𝑖 symmetric by summing over all indices 𝑗 ∈
{1, . . . , 𝑀}. We additionally choose 𝐶𝑖 = 𝐶𝑖 , leading to

𝑚𝑖 (𝑦) =
𝑝←𝑖 (𝑦)∑𝑀
𝑗=1 𝑝←𝑗 (𝑦)

. (S.7)

These𝑚𝑖 fulfill Equation 20 (see the definition of 𝑝←𝑖 , Equation 35)
and are valid, non-negative resampling MIS weights.

S.1.2 Generalizing Pairwise MIS Weights
In order to derive the generalized Pairwise MIS weights, we proceed
as before until Equation S.5,

𝑚𝑖 (𝑌𝑖 ) ≤
𝐶𝑖

𝐶𝑖

𝑝←𝑖 (𝑌𝑖 )
𝑝 (𝑌𝑖 )

, (S.8)

but then treat canonical samples 𝑖 ∈ 𝑅 and non-canonical indices
𝑖 ∉ 𝑅 differently. Instead of including all the indices in the denom-
inator like before, we only increase the denominator by the term
corresponding to index 𝑖 , with a positive multiplier 𝛼𝑖 . We set for
non-canonical samples

𝑚𝑖 (𝑦) =
𝐶𝑖

𝐶𝑖

𝑝←𝑖 (𝑦)
𝑝 (𝑦) + 𝛼𝑖 𝑝←𝑖 (𝑦)

for 𝑖 ∉ 𝑅, (S.9)

and observe that this choice fulfills Equation S.8. We still need
𝑚𝑖 to sum to 1 over the 𝑖 that can generate 𝑦, in order to fulfill
Equation 20, so we simply divide the remainder uniformly to the
canonical samples 𝑖 ∈ 𝑅,

𝑚𝑖 (𝑦) =
1
|𝑅 |

©­«1 −
∑
𝑗∉𝑅

𝑚 𝑗 (𝑦)
ª®¬ if i ∈ R. (S.10)

Different choices for 𝐶𝑖 and 𝛼𝑖 yield a family of potential MIS
weights: denoting 𝛽𝑖 = 𝐶𝑖/𝐶𝑖 , we reach

𝑚𝑖 (𝑦) =
1
|𝑅 |

©­«1 −
∑
𝑗∉𝑅

𝛽 𝑗
𝑝←𝑗 (𝑦)

𝑝 (𝑦) + 𝛼 𝑗𝑝←𝑗 (𝑦)
ª®¬ (S.11)

=
1
|𝑅 |

©­«1 −
∑
𝑗∉𝑅

𝛽 𝑗

𝛼 𝑗
+

∑
𝑗∉𝑅

𝛽 𝑗

𝛼 𝑗

𝑝 (𝑦)
𝑝 (𝑦) + 𝛼 𝑗𝑝←𝑗 (𝑦)

ª®¬ if ∈ 𝑅

𝑚𝑖 (𝑦) = 𝛽𝑖
𝑝←𝑖 (𝑦)

𝑝 (𝑦) + 𝛼𝑖𝑝←𝑖 (𝑦)
if 𝑖 ∉ 𝑅. (S.12)

Restricting this family by requiring that the parameters do not
depend on 𝑖 , and denoting 𝛼𝑖 = 𝛼 and 𝜅 =

∑
𝑖∉𝑅 𝛽𝑖/𝛼𝑖 = (𝑀 −

|𝑅 |)𝛽/𝛼 , we reach the family

𝑚𝑖 (𝑦) =
1
|𝑅 |

©­«1 − 𝜅 + 𝜅

𝑀 − |𝑅 |
∑
𝑗∉𝑅

𝑝 (𝑦)
𝑝 (𝑦) + 𝛼𝑝←𝑗 (𝑦)

ª®¬ if 𝑖 ∈ 𝑅

(S.13)

𝑚𝑖 (𝑦) = 𝛼
𝜅

𝑀 − |𝑅 |
𝑝←𝑖 (𝑦)

𝑝 (𝑦) + 𝛼𝑝←𝑖 (𝑦)
if 𝑖 ∉ 𝑅. (S.14)

Since MIS weights must be non-negative and sum to one, we must
have 0 ≤ 𝑚𝑖 ≤ 1 for all 𝑖 and 𝑦. We must generally have 𝜅 ≤ 1
since otherwise 𝑚𝑖 (𝑦) could be negative in Equation S.13. Since
𝛼 > 0 and we must have𝑚𝑖 (𝑦) ≥ 0 in Equation S.14, we must also
have 0 ≤ 𝜅. We have 0 ≤ 𝜅 ≤ 1, and we interpret the above MIS
weights as linear interpolation between uniformly choosing one of

the canonical samples (𝜅 = 0,𝑚𝑖 = 1/|𝑅 | for 𝑖 ∈ 𝑅,𝑚𝑖 = 0 for 𝑖 ∉ 𝑅),
and a fundamental MIS scheme (𝜅 = 1) parametrized by 𝛼 :

𝑚𝑖 (𝑦) =
1
|𝑅 |

©­« 1
𝑀 − |𝑅 |

∑
𝑗∉𝑅

𝑝 (𝑦)
𝑝 (𝑦) + 𝛼𝑝←𝑗 (𝑦)

ª®¬ if 𝑖 ∈ 𝑅 (S.15)

𝑚𝑖 (𝑦) = 𝛼
1

𝑀 − |𝑅 |
𝑝←𝑖 (𝑦)

𝑝 (𝑦) + 𝛼𝑝←𝑖 (𝑦)
if 𝑖 ∉ 𝑅. (S.16)

The uniform case. To find a sensible value for 𝛼 for the fundamen-
tal MIS scheme, we consider the simple case when all 𝑋𝑖 are i.i.d.
with 𝑝𝑖 = 𝑝 for all 𝑖 . In this case, we have no reason to favor any of
the samples and we should have𝑚1 = · · · =𝑚𝑀 = 1/𝑀 , yielding

𝑚𝑖 (𝑦) =
1
|𝑅 |

©­« 1
𝑀 − |𝑅 |

∑
𝑗∉𝑅

1
1 + 𝛼

ª®¬ =
1
𝑀

if 𝑖 ∈ 𝑅 (S.17)

𝑚𝑖 (𝑦) = 𝛼
1

𝑀 − |𝑅 |
1

1 + 𝛼 =
1
𝑀

if 𝑖 ∉ 𝑅, (S.18)

from which we solve

𝛼 =
𝑀

|𝑅 | − 1. (S.19)

In the fundamental case 𝜅 = 1, we substitute 𝛼 = 𝑀/|𝑅 | − 1 and
reach

𝑚𝑖 (𝑦) =
1

𝑀 − |𝑅 |
∑
𝑗∉𝑅

𝑝 (𝑦)
|𝑅 | 𝑝 (𝑦) + (𝑀 − |𝑅 |)𝑝←𝑗 (𝑦)

if 𝑖 ∈ 𝑅

(S.20)

𝑚𝑖 (𝑦) =
𝑝←𝑖 (𝑦)

|𝑅 | 𝑝 (𝑦) + (𝑀 − |𝑅 |) 𝑝←𝑖 (𝑦)
if 𝑖 ∉ 𝑅, (S.21)

which we call uniform Pairwise MIS.

The defensive case. If we instead treat the canonical samples as
more reliable than the other samples, we may interpolate the previ-
ous solution towards always choosing one of the canonical samples
by keeping 𝛼 = 𝑀/|𝑅 |−1 and choosing 0 ≤ 𝜅 < 1. One such a heuris-
tic could be to ensure that the MIS weights of the canonical samples
are always at least as large as those of the other samples. With
𝛼 = 𝑀/|𝑅 | − 1, the canonical𝑚𝑖 (𝑦) cannot be less than (1 − 𝜅)/|𝑅 |
(set 𝑝 𝑗 (𝑦) −→ ∞ in Equation S.13), and the non-canonical𝑚𝑖 can-
not exceed 𝜅/(𝑀 − |𝑅 |) (set 𝑝←𝑖 (𝑦) −→ ∞ in Equation S.14). These
bounds can be made equal by choosing (1−𝜅)/|𝑅 | = 𝜅/(𝑀−|𝑅 |), i.e.,
𝜅 = (𝑀 − |𝑅 |)/𝑀 , which gives us the defensive generalized Pairwise
MIS weights,

𝑚𝑖 (𝑦) =
1
𝑀
+ 1
𝑀

∑
𝑗∉𝑅

𝑝 (𝑦)
|𝑅 | 𝑝 (𝑦) + (𝑀 − |𝑅 |) 𝑝←𝑗 (𝑦)

if 𝑖 ∈ 𝑅

(S.22)

𝑚𝑖 (𝑦) =
𝑀 − |𝑅 |
𝑀

𝑝←𝑖 (𝑦)
|𝑅 | 𝑝 (𝑦) + (𝑀 − |𝑅 |) 𝑝←𝑖 (𝑦)

if 𝑖 ∉ 𝑅. (S.23)

S.1.3 Resampling Weight Bounds
We next derive more accurate bounds for the resampling weights
for our generalized Talbot and Pairwise MIS weights. In all cases
we achieve the same bound, 𝐶𝑖/|𝑅 |, where 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 ≤ 𝐶𝑖 .
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Generalized Talbot MIS. A direct substitution of the Generalized
Talbot MIS weights (Equation S.7) into the formula of 𝑤𝑖 (Equa-
tion S.1) yields, assuming that 𝑌𝑖 exists (otherwise𝑤𝑖 = 0),

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) · 𝑝 (𝑌𝑖 )𝑊𝑖 ·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.24)

=

(
𝑝←𝑖 (𝑌𝑖 )∑𝑀
𝑗=1 𝑝←𝑗 (𝑌𝑖 )

)
· 𝑝 (𝑌𝑖 )𝑊𝑖 ·

���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.25)

=

𝑝𝑖 (𝑋𝑖 )
���� 𝜕𝑇 −1

𝑖

𝜕𝑌𝑖

����∑
𝑗 ∈𝑅 𝑝←𝑗 (𝑌𝑖 ) +

∑
𝑗∉𝑅 𝑝←𝑗 (𝑌𝑖 )

· 𝑝 (𝑌𝑖 )𝑊𝑖 ·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.26)

=
𝑝 (𝑌𝑖 )

|𝑅 | 𝑝 (𝑌𝑖 ) +
∑

𝑗∉𝑅 𝑝←𝑗 (𝑌𝑖 )
· 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 (S.27)

≤ 1
|𝑅 | ·𝐶𝑖 =

𝐶𝑖

|𝑅 | . (S.28)

Generalized Pairwise MIS. We first cover the feasible parameter
combinations 𝛼 > 0 and 0 ≤ 𝜅 ≤ 1 in one go, assuming that
𝑝𝑖 (𝑋𝑖 )𝑊𝑖 ≤ 𝐶𝑖 . For canonical samples 𝑖 ∈ 𝑅, we have 𝑝𝑖 = 𝑝 and
𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 ) = 𝑋𝑖 , we substitute Equation S.13 and get the bound

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) · 𝑝 (𝑌𝑖 )𝑊𝑖 ·
���� 𝜕𝑌𝑖𝜕𝑋𝑖

���� (S.29)

=
1
|𝑅 |

©­«1 − 𝜅 + 𝜅

𝑀 − |𝑅 |
∑
𝑗∉𝑅

𝑝 (𝑌𝑖 )
𝑝 (𝑌𝑖 ) + 𝛼𝑝←𝑗 (𝑌𝑖 )

ª®¬ · 𝑝 (𝑌𝑖 )𝑊𝑖 · 1

(S.30)

≤ 1
|𝑅 |

©­«1 − 𝜅 + 𝜅

𝑀 − |𝑅 |
∑
𝑗∉𝑅

𝑝 (𝑌𝑖 )
𝑝 (𝑌𝑖 )

ª®¬ · 𝑝 (𝑌𝑖 )𝑊𝑖 (S.31)

≤ 𝐶𝑖

|𝑅 | . (S.32)

For non-canonical samples 𝑖 ∉ 𝑅, assuming again 𝑝𝑖 (𝑋𝑖 )𝑊𝑖 ≤ 𝐶𝑖 ,
substituting Equation S.14, we get the bound

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) · 𝑝 (𝑌𝑖 )𝑊𝑖 ·
���� 𝜕𝑌𝑖𝜕𝑋𝑖

���� (S.33)

=

(
𝛼

𝜅

𝑀 − |𝑅 |
𝑝←𝑖 (𝑌𝑖 )

𝑝 (𝑌𝑖 ) + 𝛼𝑝←𝑖 (𝑌𝑖 )

)
· 𝑝 (𝑌𝑖 )𝑊𝑖 ·

���� 𝜕𝑌𝑖𝜕𝑋𝑖

���� (S.34)

= 𝛼
𝜅

𝑀 − |𝑅 |
𝑝𝑖 (𝑋𝑖 )

𝑝 (𝑌𝑖 ) + 𝛼𝑝←𝑖 (𝑌𝑖 )
· 𝑝 (𝑌𝑖 )𝑊𝑖 (S.35)

≤ 𝛼 𝜅

𝑀 − |𝑅 |𝐶𝑖 . (S.36)

(S.37)

In the case that 𝛼 ≤ 𝑀/|𝑅 | − 1, we simplify

𝑤𝑖 ≤ 𝜅
𝐶𝑖

|𝑅 | ≤
𝐶𝑖

|𝑅 | . (S.38)

S.1.4 Tractable Marginal PDFs
Sometimes the PDFs of the input samples 𝑋𝑖 are tractable functions
𝑝𝑖 . In that case, the PDFs 𝑝𝑖 may be used in place of the 𝑝𝑖 in the
MIS weight formulas, effectively replacing 𝑝←𝑖 with the following

“𝑝 from 𝑖”:

𝑝←𝑖 (𝑦) =
{
𝑝𝑖

(
𝑇−1
𝑖
(𝑦)

) ��𝑇−1
𝑖
′�� (𝑦), if 𝑦 ∈ D(𝑇−1

𝑖
)

0 otherwise , (S.39)

resulting in the following expression for the generalized Talbot MIS:

𝑚𝑖 (𝑦) =
𝑝←𝑖 (𝑌𝑖 )∑𝑀
𝑗=1 𝑝←𝑗 (𝑌𝑖 )

. (S.40)

The PairwiseMIS expression additionally contains terms 𝑝 (𝑦)whose
normalization may differ significantly from that of the PDFs 𝑝𝑖 .
As such, we suggest replacing the terms 𝑝 (𝑦) in the MIS with a
fixed canonical importance sampler 𝑐 ∈ 𝐶 that is reasonable for
integrating 𝑝 (𝑝 (𝑦) ≤ 𝐶𝑐𝑝𝑐 (𝑦)). We show the uniform case as an
example of this translation to known PDFs:

𝑚𝑖 (𝑦) =
1

𝑀 − |𝑅 |
∑
𝑗∉𝑅

𝑝𝑐 (𝑦)
|𝑅 | 𝑝𝑐 (𝑦) + (𝑀 − |𝑅 |)𝑝←𝑗 (𝑦)

if 𝑖 ∈ 𝑅

(S.41)

𝑚𝑖 (𝑦) =
𝑝←𝑖 (𝑦)

|𝑅 | 𝑝𝑐 (𝑦) + (𝑀 − |𝑅 |) 𝑝←𝑖 (𝑦)
if 𝑖 ∉ 𝑅. (S.42)

We then derive the resampling weight bounds for these updated
formulas. Since the 𝑝𝑖 are tractable, we assume unbiased contribu-
tion weights𝑊𝑖 = 1/𝑝𝑖 (𝑋𝑖 ). We also assume that the canonical sam-
ples are reasonably importance sampled for 𝑝 , i.e., 𝑝 (𝑥) ≤ 𝐶𝑖𝑝𝑖 (𝑥)
for all 𝑖 ∈ 𝑅.

Talbot MIS. Substituting Equation S.40 into Equation S.1, yields,
remembering that 𝑝←𝑗 (𝑦) = 𝑝 𝑗 (𝑦) for canonical 𝑗 ,

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) · 𝑝 (𝑌𝑖 )𝑊𝑖 ·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.43)

=

(
𝑝←𝑖 (𝑌𝑖 )∑𝑀
𝑗=1 𝑝←𝑗 (𝑌𝑖 )

)
· 𝑝 (𝑌𝑖 )
𝑝𝑖 (𝑋𝑖 )

·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.44)

=
𝑝𝑖 (𝑋𝑖 )∑

𝑗 ∈𝑅 𝑝←𝑗 (𝑌𝑖 ) +
∑

𝑗∉𝑅 𝑝←𝑗 (𝑌𝑖 )
· 𝑝 (𝑌𝑖 )
𝑝𝑖 (𝑋𝑖 )

(S.45)

=
𝑝 (𝑌𝑖 )∑

𝑗 ∈𝑅 𝑝 𝑗 (𝑌𝑖 ) +
∑

𝑗∉𝑅 𝑝←𝑗 (𝑌𝑖 )
(S.46)

≤ 𝑝 (𝑌𝑖 )∑
𝑗 ∈𝑅 𝑝 𝑗 (𝑌𝑖 )

≤ 𝑝 (𝑌𝑖 )
|𝑅 |min𝑗 ∈𝑅 𝑝 𝑗 (𝑌𝑖 )

(S.47)

=
1
|𝑅 | max

𝑗 ∈𝑅
𝑝 (𝑌𝑖 )
𝑝 𝑗 (𝑌𝑖 )

≤ 1
|𝑅 | max

𝑗 ∈𝑅
𝐶 𝑗 . (S.48)

Pairwise MIS. We now derive bounds for the resampling weights
in the case of Generalized Pairwise MIS weights with 0 ≤ 𝛼 ≤
𝑀/|𝑅 | − 1 and 0 ≤ 𝜅 ≤ 1, using 𝑝𝑖 instead of 𝑝𝑖 .

If 𝑖 is a canonical index, we use Equation S.13 with 𝑝←𝑗 replaced
with 𝑝←𝑗 and 𝑝 replaced with 𝑝𝑐 . Noting that for canonical indices
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𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 ) = 𝑋𝑖 , we reach

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) · 𝑝 (𝑌𝑖 )𝑊𝑖 ·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.49)

=
1
|𝑅 |

©­«1 − 𝜅 + 𝜅

𝑀 − |𝑅 |
∑
𝑗∉𝑅

𝑝𝑐 (𝑌𝑖 )
𝑝𝑐 (𝑌𝑖 ) + 𝛼𝑝←𝑗 (𝑌𝑖 )

ª®¬ · 𝑝 (𝑌𝑖 )𝑝𝑖 (𝑋𝑖 )
· 1

(S.50)

≤ 1
|𝑅 |

©­«1 − 𝜅 + 𝜅

𝑀 − |𝑅 |
∑
𝑗∉𝑅

1ª®¬ · 𝑝 (𝑋𝑖 )𝑝𝑖 (𝑋𝑖 )
(S.51)

=
1
|𝑅 | ·

𝑝 (𝑋𝑖 )
𝑝𝑖 (𝑋𝑖 )

≤ 𝐶𝑖

|𝑅 | . (S.52)

Similarly, for non-canonical 𝑖 we use Equation S.14 with the same
substitutions and reach

𝑤𝑖 =𝑚𝑖 (𝑌𝑖 ) · 𝑝 (𝑌𝑖 )𝑊𝑖 ·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.53)

=

(
𝛼

𝜅

𝑀 − |𝑅 |
𝑝←𝑖 (𝑌𝑖 )

𝑝𝑐 (𝑌𝑖 ) + 𝛼𝑝←𝑖 (𝑌𝑖 )

)
· 𝑝 (𝑌𝑖 )
𝑝𝑖 (𝑋𝑖 )

·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.54)

=

©­­­«𝛼
𝜅

𝑀 − |𝑅 |

𝑝𝑖 (𝑋𝑖 )
���� 𝜕𝑇 −1

𝑖

𝜕𝑌𝑖

����
𝑝𝑐 (𝑌𝑖 ) + 𝛼𝑝←𝑖 (𝑌𝑖 )

ª®®®¬ ·
𝑝 (𝑌𝑖 )
𝑝𝑖 (𝑋𝑖 )

·
���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� (S.55)

= 𝛼
𝜅

𝑀 − |𝑅 |
𝑝 (𝑌𝑖 )

𝑝𝑐 (𝑌𝑖 ) + 𝛼𝑝←𝑖 (𝑌𝑖 )
≤ 𝛼 𝜅

𝑀 − |𝑅 |
𝑝 (𝑌𝑖 )
𝑝𝑐 (𝑌𝑖 )

(S.56)

≤ 𝛼 𝜅

𝑀 − |𝑅 |𝐶𝑐 ≤
(
𝑀

|𝑅 | − 1
)

1
𝑀 − |𝑅 |𝐶𝑐 =

𝐶𝑐

|𝑅 | . (S.57)

We can combine the above results into a single, slightly looser
bound that works for any 𝑖 and both MIS weight families (Talbot
and Pairwise) when used with tractable PDFs:

𝑤𝑖 ≤
1
|𝑅 | max

𝑗 ∈𝑅
𝐶 𝑗 . (S.58)

S.2 CONVERGENCE WITH DEPENDENT SAMPLES
In Section 5.7, we assume dependent input samples such that

(1) the ratio of canonical samples, |𝑅 | /𝑀 , never falls below a
positive constant 𝛾 for large enough𝑀 ,

(2) there exists a 𝐶 > 0 such that𝑤𝑖 ≤ 𝐶/|𝑅 | for all 𝑖 ,
(3) there exists a non-negative sequence 𝑏𝑘 such that the corre-

lation 𝜌𝑖,𝑖+𝑘 ≤ 𝑏𝑘 for all 𝑖 , and 𝑏𝑘 −→ 0.
Then,

Var
[
𝑀∑
𝑖=1

𝑤𝑖

]
=

𝑀∑
𝑖=1

Var [𝑤𝑖 ] + 2
𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

Cov(𝑤𝑖 ,𝑤𝑖+𝑘 ) (S.59)

converges to zero:
The convergence of the first term is proved in Section 5.7, and

for the second term we have
𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

Cov(𝑤𝑖 ,𝑤𝑖+𝑘 ) =
𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

𝜌𝑖,𝑖+𝑘
√

Var𝑤𝑖 Var𝑤𝑖+𝑘 (S.60)

≤
𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

max(0, 𝜌𝑖,𝑖+𝑘 )
𝐶2

4 |𝑅 |2
≤

𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

𝑏𝑘
𝐶2

4𝑀2𝛾2 , (S.61)

=
𝐶2

4𝛾2
1
𝑀2

𝑀∑
𝑘=1

𝑀−𝑘∑
𝑖=1

𝑏𝑘 =
𝐶2

4𝛾2
1
𝑀2

𝑀∑
𝑘=1
(𝑀 − 𝑘)𝑏𝑘 (S.62)

≤ 𝐶2

4𝛾2

(
1
𝑀

𝑀∑
𝑘=1

𝑏𝑘

)
𝑀→∞−−−−−→ 0. (S.63)

To reach Equation S.61, we used Popoviciu’s inequality: since
0 ≤ 𝑤𝑖 ≤ 𝐶/|𝑅 |, we know Var𝑤𝑖 ≤ 𝐶2

4 |𝑅 |2 . The next step used
|𝑅 | /𝑀 ≥ 𝛾 , and for Equation S.62 we reversed the summation
order:

∑𝑀
𝑖=1

∑𝑀−𝑖
𝑘=1 =

∑𝑀
𝑘=1

∑𝑀−𝑘
𝑖=1 . The mean of 𝑏𝑘 converges to

zero since 𝑏𝑘 converges to zero, and Equation S.63 implies

Var
[
𝑀∑
𝑖=1

𝑤𝑖

]
𝑀→∞−−−−−→ 0.

We can slightly generalize the result: assume that

|𝑅 | ≥ 𝑐𝑀𝑀0.5

√√√
𝑀∑
𝑖=1

𝑏𝑖 , (S.64)

where (𝑐𝑀 ) is any non-negative sequence that approaches infinity.
Then, like above,

𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

Cov(𝑤𝑖 ,𝑤𝑖+𝑘 ) ≤
𝑀∑
𝑖=1

𝑀−𝑖∑
𝑘=1

max(0, 𝜌𝑖,𝑖+𝑘 )
𝐶2

4 |𝑅 |2
(S.65)

=

𝑀∑
𝑘=1

𝑀−𝑘∑
𝑖=1

max(0, 𝜌𝑖,𝑖+𝑘 )
𝐶2

4 |𝑅 |2
≤

𝑀∑
𝑘=1
(𝑀 − 𝑘)𝑏𝑘

𝐶2

4 |𝑅 |2
(S.66)

≤
(
𝑀∑
𝑘=1

𝑏𝑘

)
𝑀𝐶2

4 |𝑅 |2
≤

(
𝑀∑
𝑘=1

𝑏𝑘

)
𝑀𝐶2

4𝑐2
𝑀
𝑀

(∑𝑀
𝑖=1 𝑏𝑖

) (S.67)

=
𝐶2

4𝑐2
𝑀

𝑀→∞−−−−−→ 0. (S.68)
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S.3 PRIMARY SAMPLE SPACE
Performing integration in a Monte Carlo setting typically starts
from primary sample sequences, i.e., streams of random numbers
Ū = (𝑈1,𝑈2, . . .), where 𝑈𝑖 ∈ [0, 1) are uniformly distributed. Each
Ū is used to estimate a contribution 𝐹 (Ū), and the Monte Carlo
integration result is

𝐼 = E
[
𝐹 (Ū)

]
=

∫
𝒰

𝐹 (ū) dū. (S.69)

A unidirectional path tracer builds a sequence of paths of different
lengths from the random sequences Ū. Often, the path tracer pro-
duces, for each length 𝑑 , 𝑁 paths 𝑋𝑑,𝑛 ∈ Ω𝑑 by different strategies.
Here, Ω𝑑 is the space of all paths of length 𝑑 . 𝑁 is often 2, and the
paths 𝑋𝑑,𝑛 with different 𝑛 correspond to a next-event-estimation
path connected to a random light, and path continued to a direc-
tion importance sampled according to the BSDF. The paths 𝑋𝑑,𝑛 are
functions of Ū, i.e., 𝑋𝑑,𝑛 = 𝑥𝑑,𝑛 (Ū).
The total path contribution is the sum of the integrals of the

fixed-length path contributions,

𝐼 =

∞∑
𝑑=1

∫
Ω𝑑

𝑓 (𝑥) d𝑥 . (S.70)

We factor in the MIS weights 𝜔𝑑,𝑛 of the 𝑛 sampling strategies and
reach

𝐼 =

∞∑
𝑑=1

∫
Ω𝑑

[
𝑁∑
𝑛=1

𝜔𝑑,𝑛 (𝑥)
]
𝑓 (𝑥) d𝑥 (S.71)

=

∞∑
𝑑=1

𝑁∑
𝑛=1

∫
Ω𝑑

𝜔𝑑,𝑛 (𝑥) 𝑓 (𝑥) d𝑥 . (S.72)

We assume for each term a proper importance sampler that produces
paths 𝑋𝑑,𝑛 ∈ Ω𝑑 with density 𝑝𝑑,𝑛 . We assume that 𝜔𝑑,𝑛 (𝑥) = 0
whenever 𝑝𝑑,𝑛 (𝑥) = 0 to retain the partition of unity. This yields us

𝐼 =

∞∑
𝑑=1

𝑁∑
𝑛=1

E

[
𝜔𝑑,𝑛 (𝑋𝑑,𝑛)

𝑓 (𝑋𝑑,𝑛)
𝑝𝑑,𝑛 (𝑋𝑑,𝑛)

]
. (S.73)

Since the 𝑋𝑑,𝑛 are generated from the random variables Ū by 𝑋𝑑,𝑛 =

𝑥𝑑,𝑛 (Ū), we may write

𝐼 =

∞∑
𝑑=1

𝑁∑
𝑛=1

E

[
𝜔𝑑,𝑛

(
𝑥𝑑,𝑛 (Ū)

) 𝑓
(
𝑥𝑑,𝑛 (Ū)

)
𝑝𝑑,𝑛

(
𝑥𝑑,𝑛 (Ū)

) ] . (S.74)

The fact that many Ū may lead to the same path 𝑋𝑑,𝑛 does not
complicate this fact. We then write the expectations as integrals and
reach

𝐼 =

∞∑
𝑑=1

𝑁∑
𝑛=1

∫
𝒰

𝜔𝑑,𝑛
(
𝑥𝑑,𝑛 (ū)

) 𝑓
(
𝑥𝑑,𝑛 (ū)

)
𝑝𝑑,𝑛

(
𝑥𝑑,𝑛 (ū)

) dū (S.75)

=

∫
𝒰

∞∑
𝑑=1

𝑁∑
𝑛=1

𝜔𝑑,𝑛
(
𝑥𝑑,𝑛 (ū)

) 𝑓
(
𝑥𝑑,𝑛 (ū)

)
𝑝𝑑,𝑛

(
𝑥𝑑,𝑛 (ū)

) dū. (S.76)

This yields us the 𝐹 for Equation S.69,

𝐹 (ū) =
∞∑
𝑑=1

𝑁∑
𝑛=1

𝜔𝑑,𝑛
(
𝑥𝑑,𝑛 (ū)

) 𝑓
(
𝑥𝑑,𝑛 (ū)

)
𝑝𝑑,𝑛

(
𝑥𝑑,𝑛 (ū)

) . (S.77)

Algorithm 1: Content of the reservoir struct (88 bytes).
1 struct Reservoir
2 float M; // Confidence weight (for e.g., M-capping).
3 float W; // Unbiased contribution weight.
4 float3 F; // Cached integrand value of the sample.
5 uint pathFlags; // Path length, technique type, reconn. vertex id, etc.
6 uint initRandomSeed; // Random state at primary hit x̄1 .

// Information about the reconnection vertex (rc):

7 uint rcVertexRandomSeed; // Random state at reconn. vertex.
8 uint rcVertexInstanceID; // Hit point information:
9 uint rcVertexPrimitiveIndex;

10 float2 rcVertexBarycentrics;
11 float3 rcVertexWi; // Direction to next vertex of base path.
12 float3 rcVertexRadiance; // Incident radiance from next vertex.
13 float4 rcVertexCachedValues; // Various partial terms for

evaluating the Jacobian at reconnection. Light sampling PDF for the
MIS weight is also stored here.

S.4 RESERVOIR STORAGE
We provide an overview of our reservoir data structure in Algo-
rithm 1. A key takeaway is that most of the storage is used for
enabling a reconnection to the base path’s vertex: reconnection re-
quires evaluating offset path’s visibility to the reconnection vertex
and the BSDF towards base path’s next vertex. Note that our reser-
voir data structure is unoptimized and highly compressible–real-
time use would allow lossy compression for increased performance,
but our prototype implementation does not do it.
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S.5 PROOFS OF THEOREMS

S.5.1 Unbiased Contribution Weights (Theorem A.1)
Proof of Theorem A.1. Assume Item 1:𝑊 and 𝑋 are such that

E[𝑓 (𝑋 )𝑊 ] =
∫
supp𝑋 𝑓 (𝑥) d𝑥 for any integrable 𝑓 . We prove Item 2:

Let 𝐴 ⊂ supp(𝑋 ) be measurable. Then,∫
𝐴

𝑝𝑋 (𝑥) d𝑥 =

∫
supp(𝑋 )

1𝐴 (𝑥)𝑝𝑋 (𝑥) d𝑥

= E [1𝐴 (𝑋 )𝑝𝑋 (𝑋 )𝑊 ] = E [E [1𝐴 (𝑋 )𝑝𝑋 (𝑋 )𝑊 | 𝑋 ]]
= E [1𝐴 (𝑋 )𝑝𝑋 (𝑋 ) E [𝑊 | 𝑋 ]]

=

∫
𝐴

𝑝𝑋 (𝑥)2 E [𝑊 | 𝑋 = 𝑥] d𝑥 .

(S.78)

Since this holds for all measurable 𝐴 ⊂ supp(𝑋 ), we must have,
almost everywhere in supp(𝑋 ),

𝑝𝑋 (𝑥) = 𝑝𝑋 (𝑥)2 E [𝑊 | 𝑋 = 𝑥] . (S.79)

Since 𝑝𝑋 (𝑥) > 0 in supp(𝑋 ), we deduce E [𝑊 | 𝑋 = 𝑥] = 1/𝑝𝑋 (𝑥)
a.e. in supp(𝑋 ).
Next, assume Item 2:𝑊 and 𝑋 are such that E [𝑊 | 𝑋 = 𝑥] =

1/𝑝𝑋 (𝑥) a.e. in supp(𝑋 ). We prove Item 1: Let 𝑓 : Ω → R be
integrable. We have

E [𝑓 (𝑋 )𝑊 ] = E [E [𝑓 (𝑋 )𝑊 | 𝑋 ]] = E [𝑓 (𝑋 ) E [𝑊 | 𝑋 ]]

= E

[
𝑓 (𝑋 )
𝑝𝑋 (𝑋 )

]
=

∫
supp(𝑋 )

𝑓 (𝑥) d𝑥 .
(S.80)

□

S.5.2 Asymptotic Sample Distribution (Theorem A.2)
We start from Equation 22 and derive the equality

𝑀∑
𝑖=1

𝑤𝑖 = 𝑝 (𝑌 )𝑊𝑌 . (S.81)

We then prove the following, slightly more general result:
If (𝑌𝑀 )∞𝑀=𝑀0

is a sequence of random variables that fulfill
supp𝑝 ⊂ supp𝑌𝑀 (Equation 57) and have non-negative unbiased
contribution weights𝑊𝑌𝑀 such that

Var
[
𝑝 (𝑌𝑀 )𝑊𝑌𝑀

] 𝑀→∞−−−−−→ 0 (S.82)
(a generalization of Equation 58), then the conclusions of Theo-
rem A.2 hold:

Proof of Theorem A.2 (Item 1), Eqation 59. Let 𝜀 > 0 be
given. We prove that

Pr[|𝑝𝑌 (𝑌 ) − 𝑝 (𝑌 ) | > 𝜀]
𝑀→∞−−−−−→ 0 :

For any 0 < 𝜀2 < 1 we have
Pr [|𝑝 (𝑌 ) − 𝑝𝑌 (𝑌 ) | > 𝜀] = 𝐴 + 𝐵 +𝐶, where (S.83)

𝐴 = Pr
[(
|𝑝 (𝑌 ) − 𝑝𝑌 (𝑌 ) | > 𝜀

)
∧

(
𝑝𝑌 (𝑌 ) ≥

1
𝜀2

)]
,

𝐵 = Pr
[(
|𝑝 (𝑌 ) − 𝑝𝑌 (𝑌 ) | > 𝜀

)
∧

(
1 < 𝑝𝑌 (𝑌 ) <

1
𝜀2

)]
,

𝐶 = Pr
[(
|𝑝 (𝑌 ) − 𝑝𝑌 (𝑌 ) | > 𝜀

)
∧

(
𝑝𝑌 (𝑌 ) ≤ 1

)]
.

Since Pr [𝑋 ∧ 𝑌 ] ≤ Pr [𝑌 ] and 𝑝𝑌 integrates to 1, we have

𝐴 ≤ Pr
[
𝑝𝑌 (𝑌 ) ≥

1
𝜀2

]
≤ 𝜀2

(otherwise 𝑝𝑌 would integrate to more than 𝜀2 · 1/𝜀2 = 1). Since in
case 𝐵 we have 1/𝑝𝑌 (𝑌 ) > 𝜀2, we get

𝐵 = Pr
[(
|𝑝 (𝑌 ) − 𝑝𝑌 (𝑌 ) | 𝜀2 > 𝜀 · 𝜀2

)
∧

(
1 < 𝑝𝑌 (𝑌 ) <

1
𝜀2

)]
≤ Pr

[(
|𝑝 (𝑌 ) − 𝑝𝑌 (𝑌 ) |

𝑝𝑌 (𝑌 )
> 𝜀 · 𝜀2

)
∧

(
1 < 𝑝𝑌 (𝑌 ) <

1
𝜀2

)]
≤ Pr

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− 1

���� > 𝜀 · 𝜀2] .
Similarly, in case 𝐶 we have 1/𝑝𝑌 (𝑌 ) ≥ 1, and thus

𝐶 = Pr
[(
|𝑝 (𝑌 ) − 𝑝𝑌 (𝑌 ) | > 𝜀

)
∧

(
𝑝𝑌 (𝑌 ) ≤ 1

)]
≤ Pr

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− 1

���� > 𝜀] .
By Chebyshev’s inequality, we have for any 𝑠 > 0 (such as 𝑠 = 𝜀 ·𝜀2

for 𝐵 and 𝑠 = 𝜖 for 𝐶), that

Pr
[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )

− 1
���� > 𝑠] <

1
𝑠2 E

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− 1

����2] 𝑀→∞−−−−−→ 0, (S.84)

and thus

0 ≤ lim
𝑀→∞

𝐴 + 𝐵 +𝐶 ≤ 𝜀2 + 0 + 0 𝜀2→0−−−−→ 0, (S.85)

i.e.,

Pr [|𝑝 (𝑌 ) − 𝑝𝑌 (𝑌 ) | > 𝜀]
𝑀→∞−−−−−→ 0. (S.86)

■

Proof of Theorem A.2 (Item 2), Eqation 60. By assumption,
we have supp𝑝 ⊂ supp𝑌𝑀 for each 𝑀 . Dropping the index 𝑀 for
brevity, we thus have

E

[
𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

]
=

∫
supp𝑌

𝑝 (𝑦) d𝑦 = ∥𝑝 ∥ . (S.87)

Thus, we deduce from the law of total variance that

Var
[
𝑝 (𝑌 )𝑊𝑌

]
= E

[
Var [𝑝 (𝑌 )𝑊𝑌 | 𝑌 ]

]
+ Var

[
E [𝑝 (𝑌 )𝑊𝑌 | 𝑌 ]

]
≥ Var

[
E [𝑝 (𝑌 )𝑊𝑌 | 𝑌 ]

]
= Var

[
𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

]
= E

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− ∥𝑝 ∥

����2] . (S.88)

Since Var[𝑝 (𝑌 )𝑊𝑌 ] by assumption tends to 0, we reach conver-
gence of 𝑝𝑌 to 𝑝 in mean square:

E

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− 1

����2] =
1
∥𝑝 ∥2

E

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− ∥𝑝 ∥

����2]
≤ 1
∥𝑝 ∥2

Var
[
𝑝 (𝑌 )𝑊𝑌

] 𝑀→∞−−−−−→ 0. (S.89)

■
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Proof of Theorem A.2 (Item 3), Eqation 61. By the Cauchy-
Schwarz inequality, convergence of a random variable in mean-
square implies convergence in mean:

E [|𝑍𝑖 − 𝑍∞ |] ≤
√

E
[
12]√E

[
|𝑍𝑖 − 𝑍∞ |2

] 𝑖→∞−−−−→ 0. (S.90)

By Equation 60, E
[��� 𝑝 (𝑌 )
𝑝𝑌 (𝑌 ) − 1

���] 𝑀→∞−−−−−→ 0. Since we have supp𝑝 ⊂
supp𝑌 , we have 𝑝𝑌 (𝑦) − 𝑝 (𝑦) = 0 − 0 outside of supp𝑌 for all 𝑀 ,
and thus∫

Ω
|𝑝𝑌 (𝑦) − 𝑝 (𝑦) | d𝑦 =

∫
supp𝑌

|𝑝𝑌 (𝑦) − 𝑝 (𝑦) | d𝑦

= E

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− 1

����] 𝑀→∞−−−−−→ 0. (S.91)

■

Proof of Theorem A.2 (Item 4). Let 𝐺 be the set of 𝑦 ∈ Ω for
which 𝑝𝑌𝑀 (𝑦) converges, and let 𝑔(𝑦) be the limit, i.e.,

𝑔(𝑦) = lim
𝑀→∞

𝑝𝑌𝑀 (𝑦) for all 𝑦 ∈ 𝐺 . (S.92)

All subsequences 𝑝𝑌𝑎𝑘 (𝑦) also converge pointwise to 𝑔(𝑦) in 𝐺 . By
Equation 61, 𝑝𝑌 (𝑦) converges to 𝑝 in the Lebesgue 𝐿1 sense:

∥𝑝 (𝑦) − 𝑝𝑌𝑀 (𝑦)∥𝐿1 =

∫
Ω

��𝑝 (𝑦) − 𝑝𝑌𝑀 (𝑦)�� d𝑦 𝑀→∞−−−−−→ 0. (S.93)

Since 𝑝𝑌𝑀 converges to 𝑝 in the 𝐿1-norm, it converges also in the
𝐿1-measure [Bartle 2014, p. 69]. Thus, it has a subsequence 𝑝𝑌𝑎𝑘 that
converges to 𝑝 almost everywhere [Bartle 2014, p. 69]. But if 𝑦 ∈ 𝐺 ,
then 𝑝𝑌𝑎𝑘 (𝑦) also converges to 𝑔(𝑦), so we must have 𝑔(𝑦) = 𝑝 (𝑦)
almost everywhere in 𝐺 . ■

Proof of Theorem A.2 (Item 5). Let 𝑋 be distributed with PDF
𝑝 and 𝐴 be an arbitrary measurable subset of Ω. Then, by Theo-
rem A.2 (Item 3),

|Pr [𝑌 ∈ 𝐴] − Pr [𝑋 ∈ 𝐴] | =
����∫
𝐴

𝑝𝑌 (𝑦) d𝑦 −
∫
𝐴

𝑝 (𝑦) d𝑦
����

≤
∫
Ω
|𝑝𝑌 (𝑦) − 𝑝 (𝑦) | d𝑦

𝑀→∞−−−−−→ 0.

■

S.5.3 Asymptotic Variance (Theorem A.3)
We first prove the support and then Item 1 – Item 3:

Proof of Theorem A.3, support. By assumption (Equation 57),
supp𝑝 ⊂ supp𝑌𝑀 for all 𝑀 . We also assume 𝑓 ≤ 𝐶𝑓 𝑝 for some
𝐶𝑓 > 0. Thus, 𝑓 (𝑥) > 0 implies 𝑝 (𝑥) > 0, and we have supp 𝑓 ⊂
supp𝑝 ⊂ supp𝑌𝑀 . ■

Proof of Theorem A.3 (Item 1), Eqation 63 and Eqation 64.
We first prove convergence in mean square:

E

[����𝑓 (𝑌 )𝑊𝑌 −
𝑓 (𝑌 )
𝑝 (𝑌 )

����2] = E


����� 𝑓 (𝑌 )𝑝 (𝑌 )

𝑀∑
𝑖=1

𝑤𝑀,𝑖 −
𝑓 (𝑌 )
𝑝 (𝑌 )

�����2
= E


𝑓 (𝑌 )2

𝑝 (𝑌 )2

����� 𝑀∑
𝑖=1

𝑤𝑀,𝑖 −
𝑝 (𝑌 )
𝑝 (𝑌 )

�����2 = E


𝑓 (𝑌 )2

𝑝 (𝑌 )2

����� 𝑀∑
𝑖=1

𝑤𝑀,𝑖 − ∥𝑝 ∥
�����2

≤ 𝐶2
𝑓

E


����� 𝑀∑
𝑖=1

𝑤𝑀,𝑖 − ∥𝑝 ∥
�����2 = 𝐶2

𝑓
Var

[
𝑀∑
𝑖=1

𝑤𝑀,𝑖

]
𝑀→∞−−−−−→ 0.

Convergence in mean square implies convergence in mean and
in probability. E.g., by Chebyshev’s inequality, given 𝜀 > 0, we have

Pr
[����𝑓 (𝑌 )𝑊𝑌 −

𝑓 (𝑌 )
𝑝 (𝑌 )

���� > 𝜀] ≤ 1
𝜀2 E

[����𝑓 (𝑌 )𝑊𝑌 −
𝑓 (𝑌 )
𝑝 (𝑌 )

����2] 𝑀→∞−−−−−→ 0.

■

Proof of Theorem A.3 (Item 2), Eqation 65. We proceed in
three steps.

Step 1. We show that

Var [𝑓 (𝑌 )𝑊𝑌 ] − Var
[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
𝑀→∞−−−−−→ 0. (S.94)

From the law of total variance we get

Var
[
𝑓 (𝑌 )𝑊𝑌

]
= Var

[
E [𝑓 (𝑌 )𝑊𝑌 |𝑌 ]

]
+ E

[
Var [𝑓 (𝑌 )𝑊𝑌 | 𝑌 ]

]
,

which we rewrite as

E
[
Var [𝑓 (𝑌 )𝑊𝑌 | 𝑌 ]

]
= Var

[
𝑓 (𝑌 )𝑊𝑌

]
− Var

[
E [𝑓 (𝑌 )𝑊𝑌 |𝑌 ]

]
= Var

[
𝑓 (𝑌 )𝑊𝑌

]
− Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
.

Since a conditional variance is non-negative, and we have

0 ≤ Var
[
𝑓 (𝑌 )𝑊𝑌

]
− Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
= E

[
Var [𝑓 (𝑌 )𝑊𝑌 | 𝑌 ]

]
= E

[
Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

𝑀∑
𝑖=1

𝑤𝑀,𝑖 | 𝑌
] ]

= E

[
𝑓 (𝑌 )2

𝑝 (𝑌 )2
Var

[
𝑀∑
𝑖=1

𝑤𝑀,𝑖 | 𝑌
] ]

≤ 𝐶2
𝑓

E

[
Var

[
𝑀∑
𝑖=1

𝑤𝑀,𝑖 | 𝑌
] ]

(S.95)

≤ 𝐶2
𝑓

(
E

[
Var

[
𝑀∑
𝑖=1

𝑤𝑀,𝑖 | 𝑌
] ]
+ Var

[
E

[
𝑀∑
𝑖=1

𝑤𝑀,𝑖 | 𝑌
] ])

= 𝐶2
𝑓

Var
[
𝑀∑
𝑖=1

𝑤𝑀,𝑖

]
𝑀→∞−−−−−→ 0.
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Step 2. We show that

Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
− Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
𝑀→∞−−−−−→ 0 (S.96)

where 𝑋 has density 𝑝 (𝑥). We start by writing

Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
− Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
= E

[
𝑓 (𝑋 )2

𝑝 (𝑋 )2

]
− E

[
𝑓 (𝑋 )
𝑝 (𝑋 )

]2
− E

[
𝑓 (𝑌 )2

𝑝𝑌 (𝑌 )2

]
+ E

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]2
(S.97)

= E

[
𝑓 (𝑋 )2

𝑝 (𝑋 )2

]
− E

[
𝑓 (𝑌 )2

𝑝𝑌 (𝑌 )2

]
.

(S.98)
Since supp𝑌 ⊂ supp𝑝 (Equation 15) and we assume supp𝑝 ⊂
supp𝑌 , we have supp𝑝 = supp𝑌 . With supp𝑝 = supp𝑝 , we con-
tinue the above as

=

∫
supp𝑌

𝑝 (𝑥) 𝑓 (𝑥)
2

𝑝 (𝑥)2
d𝑥 −

∫
supp𝑌

𝑝𝑌 (𝑦)
𝑓 (𝑦)2

𝑝𝑌 (𝑦)2
d𝑦

=

∫
supp𝑌

𝑝 (𝑦) 𝑓 (𝑦)
2

𝑝 (𝑦)2
− 𝑝𝑌 (𝑦)

𝑓 (𝑦)2

𝑝𝑌 (𝑦)2
d𝑦

=

∫
supp𝑌

𝑝𝑌 (𝑦)
(
𝑓 (𝑦)2

𝑝 (𝑦)2

) (
𝑝 (𝑦)
𝑝𝑌 (𝑦)

− 𝑝 (𝑦)2

𝑝𝑌 (𝑦)2

)
d𝑦

= E

[
𝑓 (𝑌 )2

𝑝 (𝑌 )2

(
𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

− 𝑝 (𝑌 )2

𝑝𝑌 (𝑌 )2

)]
,

and thus,����Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
− Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

] ����
≤ E

[
𝑓 (𝑌 )2

𝑝 (𝑌 )2

���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− 𝑝 (𝑌 )2

𝑝𝑌 (𝑌 )2

����]
≤ ∥𝑝 ∥2𝐶2

𝑓
E

[���� 𝑝 (𝑌 )𝑝𝑌 (𝑌 )
− 𝑝 (𝑌 )2

𝑝𝑌 (𝑌 )2

����]
= ∥𝑝 ∥2𝐶2

𝑓
E

[����1 − (
1 − 𝑝 (𝑌 )

𝑝𝑌 (𝑌 )

)���� ����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����]
≤ ∥𝑝 ∥2𝐶2

𝑓
E

[(
1 +

����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����) ����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����]
= ∥𝑝 ∥2𝐶2

𝑓

(
E

[����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����] + E

[����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����2])

≤ ∥𝑝 ∥2𝐶2
𝑓

©­«
√√√

E

[����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����2] + E

[����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����2]ª®¬ (S.99)

𝑀→∞−−−−−→ 0
by Theorem A.2 (Item 2).

Step 3. Combining steps 1 and 2, we reach

Var [𝑓 (𝑌 )𝑊𝑌 ] − Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
(S.100)

=

(
Var [𝑓 (𝑌 )𝑊𝑌 ] − Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

] )
−

(
Var

[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
− Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

] )
𝑀→∞−−−−−→ 0.

■

Proof of Theorem A.3 (Item 3). Substituting 𝑝 (𝑥) = 𝐶𝑓 (𝑥),
i.e., 𝑝 (𝑥) = 𝑓 (𝑥)/∥ 𝑓 ∥, to the previous result, yields

Var [𝑓 (𝑌 )𝑊𝑌 ] − Var
[
𝑓 (𝑋 )∥ 𝑓 ∥
𝑓 (𝑋 )

]
𝑀→∞−−−−−→ 0,

i.e.,
Var [𝑓 (𝑌 )𝑊𝑌 ]

𝑀→∞−−−−−→ 0.
■

S.5.4 Variance in the Finite Case (Theorem 1)
Proof of Theorem 1. We continue the proof of Theorem A.3

(Item 2) in Section S.5.3, and deduce

Var [𝑓 (𝑌 )𝑊𝑌 ] − Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
= Var [𝑓 (𝑌 )𝑊𝑌 ] − Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
+ Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
− Var

[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
≤ Var [𝑓 (𝑌 )𝑊𝑌 ] − Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
+

����Var
[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
− Var

[
𝑓 (𝑋 )
𝑝 (𝑋 )

] ���� .
We denote 𝑉 = Var

[∑𝑀
𝑖=1𝑤𝑖

]
and derive from Equation S.88 in

the proof of Theorem A.2 that

E

[����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����2] ≤ Var
[
𝑝 (𝑌 )𝑊𝑌

]
∥𝑝 ∥2

=
𝑉

∥𝑝 ∥2
. (S.101)

We combine this with Equation S.99 to get����Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
− Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

] ���� (S.102)

≤ ∥𝑝 ∥2𝐶2
𝑓

©­«
√√√

E

[����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����2] + E

[����1 − 𝑝 (𝑌 )
𝑝𝑌 (𝑌 )

����2]ª®¬ (S.103)

≤ ∥𝑝 ∥2𝐶2
𝑓

(√
𝑉

∥𝑝 ∥2
+ 𝑉

∥𝑝 ∥2

)
= 𝐶2

𝑓

(
∥𝑝 ∥
√
𝑉 +𝑉

)
. (S.104)

We then borrow from Equation S.95 that

0 ≤ Var
[
𝑓 (𝑌 )𝑊𝑌

]
− Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
≤ 𝐶2

𝑓
Var

[
𝑀∑
𝑖=1

𝑤𝑖

]
= 𝐶2

𝑓
𝑉 ,

and reach

Var [𝑓 (𝑌 )𝑊𝑌 ] − Var
[
𝑓 (𝑋 )
𝑝 (𝑋 )

]
≤ Var [𝑓 (𝑌 )𝑊𝑌 ] − Var

[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
+

����Var
[
𝑓 (𝑌 )
𝑝𝑌 (𝑌 )

]
− Var

[
𝑓 (𝑋 )
𝑝 (𝑋 )

] ���� .
≤ 𝐶2

𝑓
𝑉 +𝐶2

𝑓

(
∥𝑝 ∥
√
𝑉 +𝑉

)
= 𝐶2

𝑓

√
𝑉

(
∥𝑝 ∥ + 2

√
𝑉

)
. (S.105)

□
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Fig. 1. A parameter exploration of the number of initial samples per pixel
(𝑆 , colored lines) and the number of neighbors used for resampling (X-axis).
Each pixel generates 𝑆 candidate samples and uses RIS to select one. Then
GRIS resamples for each pixel a path from one from the neighboring 3x3,
5x5, 7x7, etc. pixels. Pairwise MIS is used.
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Fig. 2. Sampling efficiency. This experiment repeats the setting of Figure 1,
but outputs the MSE after ten seconds of rendering, revealing the most
efficient parameters for multisample rendering.

S.6 PARAMETER EXPLORATION
In this section, we analyze the effect of parameters such as neighbor
count, reuse window size and the number of spatial reuse passes
for ReSTIR PT for offline rendering, justifying our choice of default
parameters. We perform the experiments leading to our conclusions
in two scenes, the simple Cornell Box and the more complex Kitchen
scene.
We first demonstrate how sampling cost can be amortized by

increasing the number of pixels we reuse from and the number of
candidate path samples per pixel into optimal numbers. For the
first experiment, we densely reuse paths from each pixel in a square
around the current pixel, and after analyzing this case, we generalize
the results to randomly sampled sparse neighbors from a larger
neighborhood.

S.6.1 Parameters for Dense Block of Pixels
Path reuse without GRIS (e.g., the path reuse algorithm by Bekaert
et al. [2002]) can already achieve higher sampling efficiency than
pure path tracing because resampling is cheaper than generating
samples from scratch. By defining unbiased contribution weights,

(a) Dense Reuse
MSE: 2.45e-7
MAPE: 0.0571

(b) Random Reuse
MSE: 2.37e-7
MAPE: 0.0502

(c) Reference

Fig. 3. A comparison of 60-second equal-time rendering of the Kitchen
scene. Dense reuse and random reuse have similar MSE/MAPE with their
respective optimal parameters, but random reuse produces results visually
closer to the reference.

our GRIS supports more aggressive amortization of the sampling
cost–with a reservoir, we can increase the number of input samples
for the initial RIS to further amortize the sample generation cost.
For 𝑆 candidate samples, we approximately “gain” 𝑆 samples when
reusing one sample. To analyze the sampling efficiency, we form a
simplifiedmodel that measures the ratio between the number of rays
gained and the number of rays computed. Assuming a simplified
ideal case where all pixels generate paths with a fixed length 𝐿 and
reusing a neighbor effectively gains all samples it generates, we
write the following equation for reusing 𝐾 pixels (including self),

# rays gained
# rays computed =

𝐾𝑆𝐿

𝑆𝐿 + 𝜂 (𝐾 − 1) , (S.106)

where 𝜂 is the ray cost we pay for resampling (usually 𝜂 < 𝐿).
If 𝑆 = 1, the equation evaluates to 𝐾𝐿/(𝐿 +𝜂 (𝐾 − 1)). Even when

𝐾 → ∞, the efficiency is still bounded by 𝐿/𝜂. If we have 𝑆 → ∞,
the efficiency is bounded by 𝐾 , which means that the efficiency
improvement becomes theoretically unlimited in this simplified ideal
case. In practice, we can measure sampling efficiency by comparing
the variance at equal render time.
This suggests that we should use a relatively large 𝑆 and a rel-

atively large 𝐾 to achieve higher sampling efficiency. In practice,
we observe in Figure 1 that increasing 𝑆 and 𝐾 eventually becomes
harmful: increasing the neighbor count 𝐾 increases MSE instead of
reducing it when the neighborhood becomes large enough, and a
larger 𝑆 leads to problems even sooner. This is because enlarging
the neighborhood size adds samples that are farther away, and path
space similarity generally decreases by distance. This eventually
offsets the benefit from more samples. Enlarging 𝑆 (the candidate
count for initial resampling) can also eventually lead to diminishing
returns, as we show in Figure 2. In both scenes, we see that using a
combination of 𝑆 = 32 and 𝐾 = 49 (i.e., a 7×7 neighborhood) results
in near-optimal sampling efficiency.

S.6.2 Parameters for Sparse Neighbors
The cost of using a large number of input samples for GRIS can be
amortized also by chaining multiple spatial reuse passes. A caveat is
that chaining spatial reuse passes with a small, fixed neighborhood
can lead to excessive correlation between the samples, which can
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lead to reduced sampling efficiency. This motivates using sparse
neighbors randomized from a larger neighborhood to minimize
correlation.
From our parameter exploration, we found that near-optimal

sampling efficiency for random reuse can be achieved with 𝑆 = 32
(similar to the dense reuse case), 2-3 rounds of spatial reuse with
6-10 random neighbors in 5-10 pixel radius (a diameter of 10-20
pixels). After comparing visual quality in this parameter range for
both scenes, we select a parameter set of 10 pixel radius, 3 rounds
of spatial reuse, and 6 random neighbors. We see a slight variance
reduction in equal render time compared to dense reuse with its
near-optimal parameters. The improvement of sampling efficiency is
small, because sparse reuse requires a larger neighborhood to reduce
correlation, which also lowers the similarity between the pixels. This
partially cancels the benefits from amortizing the sampling cost.
The visual improvement is, however, much larger (Figure 3), since
random reuse reduces visual correlation between nearby pixels. We
find the 10-pixel radius can still be enlarged for real-time rendering,
as chaining many reuse passes over multiple frames builds up more
correlation. For real-time rendering, we use a radius of 20 pixels,
only one initial candidate sample per pixel, and one spatial reuse
pass between the current pixel and three random others, to keep
the rendering time low.

S.7 MATHEMATICAL NOTES

S.7.1 Constraints on𝑤𝑖 for Zero Bias in Section 4.3
We assume, according to the section, that

𝑔𝑖 (𝑥) = [𝑥 ∈ D(𝑇𝑖 )] 𝑐𝑖 (𝑦𝑖 ) · 𝑓 (𝑦𝑖 )
���� 𝜕𝑇𝑖𝜕𝑥 ���� ,

where 𝑦𝑖 is a shorthand for 𝑇𝑖 (𝑥), and [·] is 1 if · is true and 0
otherwise, and that either
• (easy case) 𝑤𝑖 > 0 exactly when 𝑋𝑖 ∈ D(𝑇𝑖 ) and 𝑌𝑖 =

𝑇𝑖 (𝑋𝑖 ) ∈ supp 𝑝 , otherwise𝑤𝑖 = 0, or
• (general case)𝑤𝑖 are also allowed to be 0 also when 𝑐𝑖 (𝑌𝑖 ) =

0 or 𝑊𝑖 = 0, and Equation 17 holds for all 𝑦 ∈ supp𝑝 ∩⋃𝑀
𝑖=1𝑇𝑖 (supp𝑋𝑖 ).

Then, we show that the derived estimator is unbiased,

𝐸

[
𝑔𝑠 (𝑋𝑠 )

∑𝑀
𝑗=1𝑤 𝑗

𝑤𝑠
𝑓 (𝑋𝑠 )𝑊𝑠

]
=

∫
supp𝑌

𝑓 (𝑦) d𝑦, (S.107)

and that Equation 15 holds, i.e.,

supp𝑌 = supp 𝑝 ∩
𝑀⋃
𝑖=1

𝑇𝑖 (supp𝑋𝑖 ) . (S.108)

Let us first prove Equation S.108 in both cases.

Proof. Easy case. If 𝑦 ∈ supp𝑝 ∩ ⋃𝑀
𝑖=1𝑇𝑖 (supp𝑋𝑖 ), then 𝑦 =

𝑇𝑖 (𝑥𝑖 ) for some 𝑥𝑖 ∈ supp𝑋𝑖 where 𝑥𝑖 can be sampledwith a positive
PDF. Since also 𝑦 ∈ supp𝑝 , we have 𝑝 (𝑦) = 𝑝 (𝑇𝑖 (𝑥𝑖 )) > 0, and
therefore by assumption𝑤𝑖 > 0. Thus, we have an 𝑥𝑖 with positive
PDF, 𝑤𝑖 > 0, and 𝑦 = 𝑇𝑖 (𝑥𝑖 ), and we have a way of sampling 𝑦
with a positive PDF, i.e., 𝑦 ∈ supp𝑌 . We showed that supp 𝑝 ∩⋃𝑀

𝑖=1𝑇𝑖 (supp𝑋𝑖 ) ⊂ supp𝑌 .
If, on the other hand, 𝑦 ∈ supp𝑌 , the PDF of sampling 𝑦 is

positive. Thus, there exists an 𝑥𝑖 with a positive PDF and a positive
selection probability for 𝑦 = 𝑇𝑖 (𝑥𝑖 ). Hence 𝑤𝑖 > 0, which implies
𝑝 (𝑦) > 0, and hence 𝑦 ∈ supp𝑝 ∩⋃𝑀

𝑖=1𝑇𝑖 (supp𝑋𝑖 ). Combined with
the previous, we have supp𝑌 = supp𝑝 ∩⋃𝑀

𝑖=1𝑇𝑖 (supp𝑋𝑖 ).

General case. Let 𝑦 ∈ supp𝑝 ∩ ⋃𝑀
𝑖=1𝑇𝑖 (supp𝑋𝑖 ). Let 𝐼 be the

set of indices for which 𝑦 ∈ 𝑇𝑖 (supp𝑋𝑖 ). Since
∑
𝑖∈𝐼 𝑐𝑖 (𝑦) = 1 by

assumption, there exists at least one 𝑖 such that 𝑐𝑖 (𝑦) > 0, and
therefore an 𝑥𝑖 such that 𝑦 = 𝑇𝑖 (𝑥𝑖 ) with 𝑝𝑋𝑖

(𝑥𝑖 ) > 0. Since 0 <

𝑝𝑋𝑖
(𝑥𝑖 ) = 1/E [𝑊𝑖 | 𝑋𝑖 = 𝑥𝑖 ], the conditional expectation of𝑊𝑖 is

positive and hence Pr [𝑊𝑖 > 0 | 𝑋𝑖 = 𝑥𝑖 ] > 0 and 𝑝𝑌 (𝑦) > 0, i.e.,
𝑦 ∈ supp𝑌 .

Assume then that𝑦 ∈ supp𝑌 . The PDF of generating𝑦 is positive,
so there have to exist 𝑖 and 𝑥𝑖 ∈ Ω𝑖 such that 𝑝𝑋𝑖

(𝑥𝑖 ) > 0, 𝑦 =

𝑇𝑖 (𝑥𝑖 ), and with a positive conditional probability 𝑤𝑖 > 0. If 𝑤𝑖

may be positive, it follows that 𝑦 ∈ supp𝑝 , and hence 𝑦 ∈ supp 𝑝 ∩⋃𝑀
𝑖=1𝑇𝑖 (supp𝑋𝑖 ). Combined with the previous, we have supp𝑌 =

supp𝑝 ∩⋃𝑀
𝑖=1𝑇𝑖 (supp𝑋𝑖 ). □

Next, we will prove Equation S.107.
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Proof. First,

E

[
𝑔𝑠 (𝑋𝑠 )

∑𝑀
𝑗=1𝑤 𝑗

𝑤𝑠
𝑊𝑠

]
(S.109)

= E

[
𝑀∑
𝑠=1
[𝑤𝑠 > 0] 𝑤𝑠∑𝑀

𝑗=1𝑤 𝑗

𝑔𝑠 (𝑋𝑠 )
∑𝑀

𝑗=1𝑤 𝑗

𝑤𝑠
𝑊𝑠

]
(S.110)

= E

[
𝑀∑
𝑠=1
[𝑤𝑠 > 0]𝑔𝑠 (𝑋𝑠 )𝑊𝑠

]
. (S.111)

Next, we substitute the definition of 𝑔𝑠 and reach

= E

[
𝑀∑
𝑠=1
[𝑤𝑠 > 0] [𝑋𝑠 ∈ D(𝑇𝑠 )] 𝑐𝑠 (𝑌𝑠 ) 𝑓 (𝑌𝑠 )

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����𝑊𝑠

]
. (S.112)

We add in the assumption which holds in both cases, 𝑤𝑠 = 0 if
𝑝 (𝑌𝑠 ) = 0, and reach

= E

[
𝑀∑
𝑠=1
[𝑌𝑠 ∈ supp𝑝] [𝑤𝑠 > 0] [𝑋𝑠 ∈ D(𝑇𝑠 )] 𝑐𝑠 (𝑌𝑠 ) 𝑓 (𝑌𝑠 )

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����𝑊𝑠

]
.

(S.113)

Next we substitute [𝑤𝑠 > 0] = 1 − [𝑤𝑠 = 0], and reach

= E

[
𝑀∑
𝑠=1
[𝑌𝑠 ∈ supp𝑝] [𝑋𝑠 ∈ D(𝑇𝑠 )] 𝑐𝑠 (𝑌𝑠 ) 𝑓 (𝑌𝑠 )

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����𝑊𝑠

]
− E

[
𝑀∑
𝑠=1
[𝑌𝑠 ∈ supp 𝑝] [𝑤𝑠 = 0] [𝑋𝑠 ∈ D(𝑇𝑠 )] 𝑐𝑠 (𝑌𝑠 ) 𝑓 (𝑌𝑠 )

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����𝑊𝑠

]
.

(S.114)

Using the definition of unbiased contribution weights (everything
except𝑊𝑠 is a function of 𝑋𝑠 ), we get for the first term,

E

[
𝑀∑
𝑠=1
[𝑌𝑠 ∈ supp𝑝] [𝑋𝑠 ∈ D(𝑇𝑠 )] 𝑐𝑠 (𝑌𝑠 ) 𝑓 (𝑌𝑠 )

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����𝑊𝑠

]
(S.115)

=

𝑀∑
𝑠=1

∫
supp𝑋𝑠

[𝑦𝑠 ∈ supp𝑝] [𝑥𝑠 ∈ D(𝑇𝑠 )] 𝑐𝑠 (𝑦𝑠 ) 𝑓 (𝑦𝑠 )
���� 𝜕𝑇𝑠𝜕𝑥𝑠

���� d𝑥𝑠
(S.116)

=

𝑀∑
𝑠=1

∫
D(𝑇𝑠 )

[𝑦𝑠 ∈ supp𝑝] [𝑥𝑠 ∈ supp𝑋𝑠 ] 𝑐𝑠 (𝑦𝑠 ) 𝑓 (𝑦𝑠 )
���� 𝜕𝑇𝑠𝜕𝑥𝑠

���� d𝑥𝑠 ,
(S.117)

which, with a change of variables 𝑦 = 𝑇𝑠 (𝑥𝑠 ) for each of the terms,
and then denoting 𝑥𝑠 = 𝑇−1

𝑠 (𝑦), simplifies into

=

𝑀∑
𝑠=1

∫
I(𝑇𝑠 )

[𝑦 ∈ supp 𝑝] [𝑥𝑠 ∈ supp𝑋𝑠 ] 𝑐𝑠 (𝑦) 𝑓 (𝑦) d𝑦 (S.118)

=

𝑀∑
𝑠=1

∫
supp𝑝

[𝑦 ∈ I(𝑇𝑠 )] [𝑥𝑠 ∈ supp𝑋𝑠 ] 𝑐𝑠 (𝑦) 𝑓 (𝑦) d𝑦 (S.119)

=

∫
supp𝑝

(
𝑀∑
𝑠=1
[𝑦 ∈ I(𝑇𝑠 )] [𝑥 ∈ supp𝑋𝑠 ] 𝑐𝑠 (𝑦)

)
𝑓 (𝑦) d𝑦. (S.120)

We then write the product of the brackets as a summation condition
and reach

=

∫
supp𝑝

©­­­«
𝑀∑
𝑠=1

𝑦∈𝑇𝑠 (supp𝑋𝑠 )

𝑐𝑠 (𝑦𝑠 )
ª®®®¬ 𝑓 (𝑦) d𝑦 (S.121)

=

∫
supp𝑝∩⋃𝑖 𝑇𝑖 (supp𝑋𝑖 )

©­­­«
𝑀∑
𝑠=1

𝑦∈𝑇𝑠 (supp𝑋𝑠 )

𝑐𝑠 (𝑦𝑠 )
ª®®®¬ 𝑓 (𝑦) d𝑦 (S.122)

=

∫
supp𝑌

©­­­«
𝑀∑
𝑠=1

𝑦∈𝑇𝑠 (supp𝑋𝑠 )

𝑐𝑠 (𝑦)
ª®®®¬ 𝑓 (𝑦) d𝑦 (S.123)

=

∫
supp𝑌

𝑓 (𝑦) d𝑦. (S.124)

(S.125)

For the method be unbiased for integrating 𝑓 over supp𝑌 , the
second term,

E

[
𝑀∑
𝑠=1
[𝑌𝑠 ∈ supp𝑝] [𝑤𝑠 = 0] [𝑋𝑠 ∈ D(𝑇𝑠 )] 𝑐𝑠 (𝑌𝑠 ) 𝑓 (𝑌𝑠 )

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����𝑊𝑠

]
,

must be zero.
For the easier case, 𝑤𝑖 > 0 if and only if 𝑋𝑖 ∈ D(𝑇𝑖 ) and 𝑌𝑖 =

𝑇𝑖 (𝑋𝑖 ) ∈ supp𝑝 . The above second term contains for each 𝑠 the
factor

[𝑌𝑠 ∈ supp𝑝] [𝑋𝑠 ∈ D(𝑇𝑠 )] [𝑤𝑠 = 0] (S.126)
= [𝑤𝑠 > 0] [𝑤𝑠 = 0] = 0, (S.127)

and thus the second term is zero and the estimator is unbiased.
For the general case,𝑤𝑖 is additionally allowed to be 0 when either

𝑊𝑖 = 0 or 𝑐𝑖 (𝑌𝑖 ) = 0. The second term is also then zero: for it to be
non-zero, we need to have 𝑤𝑠 = 0 for some 𝑠 . However, if 𝑤𝑠 = 0,
then by assumption, either 𝑋𝑠 ∉ D(𝑇𝑠 ), 𝑌𝑠 ∉ supp𝑝 , 𝑐𝑠 (𝑌𝑠 ) = 0, or
𝑊𝑠 = 0. It is easy to check all these cases: in all cases the second
term is zero. The estimator is unbiased.

□

S.7.2 Non-Negativity of𝑚𝑖 and𝑊𝑖 in Section 4.4
Here we prove that in Equation 19, we must require𝑚𝑖 ≥ 0 and
𝑊𝑖 ≥ 0 to guarantee non-negative probabilities.

Proof. The selection probabilities Pr [𝑠 = 𝑖] = 𝑤𝑖/
∑𝑀

𝑗=1𝑤 𝑗 all
need to be non-negative. They are divided by the same denominator,
which flips the sign of either none or all the𝑤𝑖/

∑𝑀
𝑗=1𝑤 𝑗 expressions.

Therefore, all𝑤𝑖 must have the same sign, so that the probabilities
can all be non-negative. If we had𝑤𝑖 ≤ 0 for all 𝑖 , we could simply
flip the signs of the𝑤𝑖 to reach𝑤𝑖 ≥ 0; without loss of generality,
we restrict ourselves to the case𝑤𝑖 ≥ 0.

If it is the case that𝑤𝑖 ≥ 0, then it is also the case that

E [𝑤𝑖 | 𝑋𝑖 ] ≥ 0 (S.128)

almost surely.
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Next, we substitute Equation 19 for 𝑤𝑖 . If 𝑥 ∉ D(𝑇𝑖 ), we have
𝑤𝑖 = 0. Otherwise, denoting 𝑦 = 𝑇𝑖 (𝑥) and 𝑌𝑖 = 𝑇𝑖 (𝑋𝑖 ), we must
have

0 ≤ E [𝑤𝑖 | 𝑋𝑖 = 𝑥] = E

[
𝑚𝑖 (𝑌𝑖 )𝑝 (𝑌𝑖 )𝑊𝑖

���� 𝜕𝑇𝑖𝜕𝑋𝑖

���� | 𝑋𝑖 = 𝑥 ] (S.129)

=𝑚𝑖 (𝑦)𝑝 (𝑦)
���� 𝜕𝑇𝑖𝜕𝑥 ���� E [𝑊𝑖 | 𝑋𝑖 = 𝑥] (S.130)

=𝑚𝑖 (𝑦)𝑝 (𝑦)
���� 𝜕𝑇𝑖𝜕𝑥 ���� 1

𝑝𝑋𝑖
(𝑥) . (S.131)

Since 𝑝 (𝑦),
��� 𝜕𝑇𝑖𝜕𝑥

��� and 𝑝𝑋𝑖
(𝑥) are all non-negative and the full product

is non-negative,𝑚𝑖 (𝑦) must also be non-negative.
Looking at Equation 19, since we have 𝑚𝑖 ≥ 0, 𝑝 (𝑦) ≥ 0 and��� 𝜕𝑇𝑖𝜕𝑥

��� ≥ 0, and their product with𝑊𝑖 is 𝑤𝑖 ≥ 0, we must also have
𝑊𝑖 ≥ 0. □

S.7.3 Resampling MIS Must Be Positive in Support of 𝑐𝑖 in
Section 4.4

To guarantee unbiased integration, the resampling MIS weights
𝑚𝑖 must fulfill𝑚𝑖 (𝑦) > 0 whenever 𝑐𝑖 (𝑦) ≠ 0 in addition to non-
negativity and Equation 20:

Proof. Substituting 𝑔𝑖 into the left-hand-side of Equation 10
yields

E

[
𝑔𝑠 (𝑋𝑠 )

∑𝑀
𝑗=1𝑤 𝑗

𝑤𝑠
𝑊𝑠

]
= E

[
[𝑤𝑠 > 0]𝑔𝑠 (𝑋𝑠 )

∑𝑀
𝑗=1𝑤 𝑗

𝑤𝑠
𝑊𝑠

]
(S.132)

= E

[
𝑀∑
𝑠=1
[𝑤𝑠 > 0] 𝑤𝑠∑𝑀

𝑗=1𝑤 𝑗

𝑔𝑠 (𝑋𝑠 )
∑𝑀

𝑗=1𝑤 𝑗

𝑤𝑠
𝑊𝑠

]
(S.133)

=

𝑀∑
𝑠=1

E [[𝑤𝑠 > 0]𝑔𝑠 (𝑋𝑠 )𝑊𝑠 ] . (S.134)

We know that𝑤𝑠 (Equation 19) is positive if and only if 𝑋𝑠 ∈ D(𝑇𝑠 ),
𝑚𝑠 (𝑌𝑠 ) > 0, 𝑝 (𝑌𝑠 ) > 0,𝑊𝑠 > 0 and

��� 𝜕𝑇𝑠𝜕𝑋𝑠

��� > 0. We assume𝑊𝑠 ≥
0, and the case𝑊𝑠 = 0 is already handled by the factor𝑊𝑠 . The
Jacobian determinant is nonzero with probability 1 in D(𝑇𝑖 ) since
𝑇𝑖 is bijective. Hence, substituting 𝑔𝑠 , we reach

=

𝑀∑
𝑠=1

E

[
[𝑋𝑠 ∈ D(𝑇𝑠 )] [𝑚𝑠 (𝑌𝑠 ), 𝑝 (𝑌𝑠 ) > 0] 𝑐𝑠 (𝑌𝑠 ) 𝑓 (𝑌𝑠 )

���� 𝜕𝑇𝑠𝜕𝑋𝑠

����𝑊𝑠

]
.

Everything left from the unbiased contribution weight𝑊𝑠 is a func-
tion of𝑋𝑠 . Hence, by the definition of unbiased contribution weights,
we reach

=

𝑀∑
𝑠=1

∫
supp𝑋𝑠

[𝑥𝑠 ∈ D(𝑇𝑠 )] [𝑚𝑠 (𝑦𝑠 ), 𝑝 (𝑦𝑠 ) > 0] 𝑐𝑠 (𝑦𝑠 ) 𝑓 (𝑦𝑠 )
���� 𝜕𝑇𝑠𝜕𝑥𝑠

���� d𝑥𝑠 .
Swapping the integration domain and [𝑥𝑠 ∈ D(𝑇𝑠 )], we reach

=

𝑀∑
𝑠=1

∫
D(𝑇𝑠 )

[𝑥𝑠 ∈ supp𝑋𝑠 ] [𝑚𝑠 (𝑦𝑠 ), 𝑝 (𝑦𝑠 ) > 0] 𝑐𝑠 (𝑦𝑠 ) 𝑓 (𝑦𝑠 )
���� 𝜕𝑇𝑠𝜕𝑥𝑠

���� d𝑥𝑠 ,

and the change of variables 𝑦 = 𝑇𝑠 (𝑥𝑠 ) yields

=

𝑀∑
𝑠=1

∫
I(𝑇𝑠 )

[𝑥𝑠 ∈ supp𝑋𝑠 ] [𝑚𝑠 (𝑦), 𝑝 (𝑦) > 0] 𝑐𝑠 (𝑦) 𝑓 (𝑦) d𝑦.

Swapping the integration domain and [𝑝 (𝑦) > 0] yields

=

𝑀∑
𝑠=1

∫
supp𝑝

[𝑥𝑠 ∈ supp𝑋𝑠 ] [𝑦 ∈ I(𝑇𝑠 )] [𝑚𝑠 (𝑦) > 0] 𝑐𝑠 (𝑦) 𝑓 (𝑦) d𝑦,

which allows moving the sum inside the integral:

=

∫
supp𝑝

(
𝑀∑
𝑠=1
[𝑥𝑠 ∈ supp𝑋𝑠 ] [𝑦 ∈ I(𝑇𝑠 )] [𝑚𝑠 (𝑦) > 0] 𝑐𝑠 (𝑦)

)
𝑓 (𝑦) d𝑦.

Next, we simplify the first two indicators into the summation con-
dition:

=

∫
supp𝑝

©­­­«
𝑀∑
𝑠=1

𝑦∈𝑇𝑠 (supp𝑋𝑠 )

[𝑚𝑠 (𝑦) > 0] 𝑐𝑠 (𝑦)
ª®®®¬ 𝑓 (𝑦) d𝑦. (S.135)

The integrand is zero unless the sum contains at least one index and
we can shrink the integration domain accordingly:

=

∫
supp𝑝∩

𝑀⋃
𝑖=1

𝑇𝑖 (supp𝑋𝑖 )

©­­­«
𝑀∑
𝑠=1

𝑦∈𝑇𝑠 (supp𝑋𝑠 )

[𝑚𝑠 (𝑦) > 0] 𝑐𝑠 (𝑦)
ª®®®¬ 𝑓 (𝑦) d𝑦.

By Equation 15, this domain is exactly supp(𝑌 ):

=

∫
supp𝑌

©­­­«
𝑀∑
𝑠=1

𝑦∈𝑇𝑠 (supp𝑋𝑠 )

[𝑚𝑠 (𝑦) > 0] 𝑐𝑠 (𝑦)
ª®®®¬ 𝑓 (𝑦) d𝑦. (S.136)

Finally, if we assume𝑚𝑠 (𝑦) > 0 whenever 𝑐𝑠 (𝑦) ≠ 0, by the con-
straint of the contribution MIS weights (Equation 17), we reach

=

∫
supp𝑌

©­­­«
𝑀∑
𝑠=1

𝑦∈𝑇𝑠 (supp𝑋𝑠 )

𝑐𝑠 (𝑦)
ª®®®¬ 𝑓 (𝑦) d𝑦 (S.137)

=

∫
supp𝑌

𝑓 (𝑦) d𝑦. (S.138)

If we assumed a non-zero probability that𝑚𝑠 (𝑦) = 0while 𝑐𝑠 (𝑦) ≠ 0,
the multiplier in front of 𝑓 (𝑦) in Equation S.136 would not simplify
to 1 with the constraints of 𝑐𝑖 , and the result would be wrong. □
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