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(a) Simulated guide hairs (b) Conventional interpolated hairs (c) Our interpolated hairs

Fig. 1. Interpolated rendered hairs from the given guide hairs. (a) the hair model with 128 guide hairs; (b) 106K rendered hairs with 1.7M vertices
interpolated from the guide hairs using Linear Hair Skinning (LHS) taking 0.28 ms per frame; (c) rendered hairs interpolated using our method
taking 0.34 ms per frame. This is especially challenging for interpolation as almost no two guide hairs are the same shape.

Strand-based hair simulations have recently become increasingly popular

for a range of real-time applications. However, accurately simulating the

full number of hair strands remains challenging. A commonly employed

technique involves simulating a subset of guide hairs to capture the overall

behavior of the hairstyle. Details are then enriched by interpolation using

linear skinning. Hair interpolation enables fast real-time simulations but

frequently leads to various artifacts during runtime. As the skinning weights

are often pre-computed, substantial variations between the initial and de-

formed shapes of the hair can cause severe deviations in fine hair geometry.

Straight hairs may become kinked, and curly hairs may become zigzags.

This work introduces a novel physical-driven hair interpolation scheme

that utilizes existing simulated guide hair data. Instead of directly operating
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on positions, we interpolate the internal forces from the guide hairs before

efficiently reconstructing the rendered hairs based on their material model.

We formulate our problem as a constraint satisfaction problem for which we

present an efficient solution. Further practical considerations are addressed

using regularization terms that regulate penetration avoidance and drift

correction. We have tested various hairstyles to illustrate that our approach

can generate visually plausible rendered hairs with only a few guide hairs

and minimal computational overhead, amounting to only about 20% of con-

ventional linear hair interpolation. This efficiency underscores the practical

viability of our method for real-time applications.

CCS Concepts: • Computing methodologies→ Physical simulation;
Procedural animation.
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1 INTRODUCTION
Hair simulations contribute significantly to believable characters

and immersive environments in film, video games, and virtual reality.

However, achieving efficient and realistic hair simulations remains

an open problem because, on average, a human scalp has about

100𝑘 - 150𝑘 hair follicles, and simulating, storing, and transferring

complex geometries at such scales poses significant challenges to

both computational efficiency and robustness.
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Awidely used solution is to pre-select a fraction of hair strands as

guide hairs and only simulate those hair strands [Bertails et al. 2008;

Yuksel and Tariq 2010]. Subsequently, all remaining hair strands,

referred to as rendered (or interpolated) hairs, are synthesized from

the guide hairs via interpolation. Yet, conventional methods [Chai

et al. 2014; Epic 2024; Rosu et al. 2022; Yuksel et al. 2009] rely solely

on the geometric information of guide hairs to determine the shape

of rendered hairs. Unfortunately, this approach is prone to severe

visual artifacts when guide hairs undergo large deformations, which

is not uncommon. An example of this is shown in Fig. 1b, where

rendered hairs are unnaturally stretched due to geometric differ-

ences of their interpolated guide hairs. Though guide hairs can often

adequately represent large-scale hair motion, the resulting rendered

hairs may be highly unrealistic when generated through geometric

interpolation alone.

In this paper, we propose a novel hair interpolation scheme that

utilizes physical information directly obtained from the simulation.

Rather than directly interpolating positions, we operate on internal

forces by interpolating them from guide hairs and then solve for

rendered hair shapes that could reproduce these forces. Aiming for

real-time applications, we develop a fast Gauss-Seidel solver that

can converge with very few iterations. We introduce an efficient

drift correction scheme to stabilize solutions and penalty energies

to avoid penetrations between rendered hairs and other geome-

try (such as the face and shoulders). Our approach can entirely

avoid visual artifacts caused by conventional geometric interpola-

tion and reproduce individual rendered hair motion using distinct

physical properties. Notably, our method does not require any pre-

computation or training. We use only readily available runtime

simulation data from guide hairs, and our interpolation can be com-

puted independently for each rendered strand with only a minor

computational overhead. We have tested various hairstyles to illus-

trate that our approach can generate visually plausible rendered

hairs with only 20% additional computation time over conventional

linear hair interpolation. This efficiency underscores the practical

value of our method for real-time applications.

2 RELATED WORK
In this section, we briefly summarize prior work on hair simulation

and hair interpolation, followed by the interpolation methods with

reconstruction.

2.1 Hair Simulation
Hair simulation is computationally expensive due to the large num-

ber of hair strands. Over the years, various reduced representa-

tions of hair bundles have been proposed to achieve cost-effective

approximations. These representations encompass 2D strips [Koh

and Huang 2001], cubic lattice structures [Volino and Magnenat-

Thalmann 2006], short hair strips [Guang and Zhiyong 2002], and

volumetric representations [Lee et al. 2019; Wu and Yuksel 2016].

These representations are transformed into full hairs using baked

textures or procedural functions during rendering.

Strand-based representations have recently gained prevalence

over card/polygon-based representations due to their superior abil-

ity to capture high-fidelity hair details. In earlier works, hair strands

have often been modeled utilizing techniques such as mass-spring

chains [Rosenblum et al. 1991], rigid multi-body chains [Anjyo

et al. 1992; Chang et al. 2002], and the incorporation of ghost par-

ticles [Umetani et al. 2015] or altitude springs [Selle et al. 2008]

to address the twisting effects, particularly pertinent in simulat-

ing curly hair. Several elastic rod models have been introduced to

achieve a physically accurate representation of hair strands. These

models include the super-helix model [Bertails et al. 2006], Cosserat

rod elements (CoRdE) [Spillmann and Teschner 2007], discrete elas-

tic rods (DER) [Bergou et al. 2008], damped exponential time in-

tegrator (DETI) model [Michels et al. 2015], and position-based

Cosserat rods [Kugelstadt and Schömer 2016]. Recently, several

works have been introduced to accelerate the strand-based hair sim-

ulation scheme, e.g., resolving collisions on a background Eulerian

grid [Fei et al. 2021; Han et al. 2019; Hsu et al. 2023; Huang et al.

2023; McAdams et al. 2009] and accelerating the computation using

ADMM solver [Daviet 2020, 2023].

2.2 Hair Interpolation
To address the computational demands associated with simulating

individual hair strands, a common strategy is to simulate a limited

number of guiding hair strands before employing interpolation

to reconstruct the dense hair model. Currently, the predominant

approach involves the manual authoring strand-based hairstyles,

with hair interpolation achieved through Linear Blend Skinning, also

known as Linear Hair Skinning (LHS). LHS is extensively used in

both gaming [Epic 2024] and film production [Somasundaram 2015].

Unfortunately, LHS may introduce undesirable artifacts, such as

zigzagging shapes and shortened/stretched strands, especially when

the associated guide hairs exhibit disparate shapes and motions (see

Fig. 1b), which only becomes more prominent the more complex

the hairstyle, particularly with those involving curly hair.

As these artifacts are often the result of poorly selected LHS

weights, several approaches have been proposed to address weight

computation. Chai et al. [2014] proposed a data-driven solution

reliant on full hair simulation as training data. However, its efficacy

heavily depends on having a similar range and motion between

full simulation at training and guide simulation at runtime. Since

these simulations often do not match behavior, ground truth can

be challenging to obtain, limiting the generalization of data-driven

methods. As a result, subsequent data-driven approaches [Chai et al.

2017; Lyu et al. 2022] still face challenges related to the need for

extensive training and potential artifacts when guide hairs deviate

from the training data. Chai et al. [2017] proposed the dynamic

selection of weights at runtime to allow for local weight adaptations.

However, this approach only considers large-scale motion similarity

and fails to account for any runtime fine geometry deviations (e.g.,

curls) between the guide and interpolated hairs. This is especially

truewith sparse guide hairs that each has drastically different shapes,

as shown in Fig. 1b.

To further account for changes in geometry, Lyu et al. [2022]

introduced a neural interpolator for dynamic weight prediction,

addressing previous generalization issues at the cost of computation

time. In the same vain, Rosu et al. [2022] employed a pre-trained

Variational Autoencoder (VAE) to convert the shape of guide hairs
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into latent vectors, generating full hairs by decoding these interpo-

lated latent vectors. Strand-VAE [Shen et al. 2023; Sklyarova et al.

2023] has extended this to reconstructing full hairs from a limited

number of hair strands. However, the long inference times asso-

ciated with this method hinder its real-time application, and its

outcomes are constrained by the limitations of the training dataset,

particularly concerning curly hair.

2.3 Interpolation Methods with Reconstruction
Our method is conceptually similar to the class of techniques known

as gradient-domain reconstruction [Huang et al. 2006, 2010; Levin

et al. 2004; Zheng 2013]. These methods apply various modifications

to the gradient field of images and meshes and then reconstruct

the images or meshes by solving a linear system, during which the

spurious noise in the gradient domain is eliminated. We observe

that the gradient field in a physical simulation corresponds exactly

to the forces derived from physical strains and, thus, can be trivially

obtained from existing simulations. As such, we propose an inter-

polation that instead operates on material-aware internal forces.

This retains the benefits of gradient-domain reconstruction while

making our method aware of physical properties like differing rest

shapes and materials.

Physical material properties have been known to integrate well

with physical systems. Specifically, approaches based on differential
coordinates often utilize material-strain-based mesh reconstruction

techniques reminiscent of gradient-domain reconstruction. For ex-

ample, guided simulation methods [Barbič et al. 2009; Schumacher

et al. 2012] define penalties based on differences in material strains

to match target keyframes or poses in simulation. Strain-based in-

terpolation methods for shells [Fröhlich and Botsch 2011; Heeren

et al. 2014; Winkler et al. 2010] minimize differences in strains to

produce interpolated poses. However, there are several important

distinctions from our technique. Specifically, our method is designed

to interpolate deformations between many inherently different hairs

instead of the same mesh but with different poses. As such, we do

not obtain strains from pre-made poses but rather directly from a

running simulation. Furthermore, instead of operating in seconds,

our solver is designed to operate in microseconds without the expen-

sive and complex process in computing geodesic paths [Heeren et al.

2014], for example. Our solver is custom-tailored to the non-linear

hair reconstruction problem that addresses the practical concerns

for stability and performance.

3 STRAND-BASED HAIR SIMULATION
We employ Cosserat Rods to simulate hair dynamics due to their ca-

pability to capture complex behavior with an efficient position-based

dynamics (PBD) solver [Kugelstadt and Schömer 2016], alongside

their widespread adoption in modern game engines, e.g., Unreal

Engine Groom [Epic 2024]. Here, we provide a very brief overview

of our guide hair simulation framework.

Cosserat theory considers stretching, shearing, twisting, and

bending resistance along the rod. Under the discretized represen-

tation, each strand segment is attached with a frame, denoted as

a quaternion q𝑗 , with two ending vertices at x𝑗 and x𝑗+1. We use

the subscript 𝑗 to index an ordered vertex or segment on each hair.

x𝑗−1

x𝑗

x𝑗+1

x𝑗+2

q𝑗−1

q𝑗 q𝑗+1 e3

e2

e1

Fig. 2. Discretized Cosserat rod with position x on vertices and orien-
tation q on segments. e𝛼 is the axis-aligned orthonormal basis

For each reference frame, we denote the 𝛼th axis as a 3D vector

d𝑗,𝛼 = q𝑗e𝛼q𝑗 , where q indicates quaternion conjugation and 3D

vector e𝛼 is the 𝛼th axis-aligned basis. By convention, we use 𝛼 = 3

as the tangent axis along the segments of hair strands. The arrange-

ments of variables are illustrated in Fig. 2.

Under this notation, Cosserat Rod formulates the rod material

with two types of constraints: the stretching and shearing constraints
Css

and the bending and twisting constraints Cbt
. Css

penalizes

stretching with respect to the rest length 𝑙 𝑗 and shearing from the

tangent direction as:

Css

𝑗 ≜ Css (x𝑗 , x𝑗+1, q𝑗 ) =
1

𝑙 𝑗
(x𝑗+1 − x𝑗 ) − d𝑗,3 . (1)

To model the bending and twisting behaviors, Cbt

𝑗
is introduced

to penalize the difference between the scaled Darboux vector at

current and rest pose as:

Cbt

𝑗 ≜ Cbt

𝑗 (q𝑗 , q𝑗+1) = q𝑖q𝑗+1 − 𝜙q0

𝑗 , (2)

𝜙 ≜

{
+1 for ∥q𝑗q𝑗+1 − q0

𝑗
∥2 ≤ ∥q𝑗q𝑗+1 + q0

𝑗
∥2

−1 for ∥q𝑗q𝑗+1 − q0

𝑗
∥2 > ∥q𝑗q𝑗+1 + q0

𝑗𝑖
∥2

. (3)

where quaternion q0

𝑗
= q0

𝑗q
0

𝑗+1 represents the scaled Darboux vector

at the rest pose. Note that further scaling the stiffness 𝑘bt by 𝑙−2

𝑗

makes our Cbt

𝑗
equivalent to that used by Kugelstadt and Schömer

[2016] with discrete Darboux vectors. The energy potential 𝐸 is

further specified in terms of constraint functions 𝐸★
𝑗
= 1

2
𝑘★C★

𝑠
𝑇C★

𝑗
,

where ★ indicates constraint type and 𝑘★ indicates the correspond-

ing stiffness. Finally, we obtain the force and torque due to Css

𝑗
on

consecutive vertices 𝑗 and 𝑗 + 1 as follows:

fss𝑗, 𝑗 =
𝑘ss

𝑙 𝑗

(
x𝑗+1 − x𝑖

𝑙 𝑗
− d𝑗,3

)
, (4)

fss𝑗, 𝑗+1 = −𝑘
ss

𝑙𝑖

(
x𝑗+1 − x𝑖

𝑙 𝑗
− d𝑗,3

)
, (5)

𝝉 ss𝑖,𝑖 = −2𝑘ss
(
x𝑗+1 − x𝑖

𝑙 𝑗
− d𝑗,3

)
q𝑖e3 . (6)

Similarly, the torque from Cbt

𝑗
on consecutive segments 𝑗 and

𝑗 + 1 reads:

𝝉bt𝑗, 𝑗 = −𝑘
bt

(
q𝑗 − 𝜙q𝑗+1q0

𝑗

)
, (7)

𝝉bt𝑗, 𝑗+1 = −𝑘bt
(
q𝑗+1 − 𝜙q𝑗q0

𝑗

)
. (8)

The extended position-based dynamics (XPBD) time integra-

tor [Macklin et al. 2016] is used to apply the forces and torques

to update each vertex’s orientation q𝑗 , angular velocity 𝝎 𝑗 , position
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x𝑗 , and velocity v𝑗 . At the end of each iteration, the quaternion is

normalized. We refer readers to the previous work [Kugelstadt and

Schömer 2016] for more details on the XPBD integration of Cosserat

rods. Then, to handle collisions, hair vertices are coupled with ma-

terial point particles on an auxiliary Eulerian grid [Fei et al. 2021;

Hsu et al. 2023; Huang et al. 2023]. For additional implementation

details, we follow and refer readers to Hsu et al. [2023].

4 PHYSICALLY GUIDED STRAND RECONSTRUCTION
In this section, we introduce our novel hair interpolation scheme uti-

lizing real-time hair simulation data to reconstruct visually plausible

rendered hair shapes.

To motivate our method, consider the simple case of two hair

strands under gravity. No matter their shapes, the strands will ex-

hibit similar internal forces in resistance to the same gravity field.

Notably, the forces themselves do not specify a particular hair shape.

So, as long as we obtain similar internal forces from nearby guides,

the rendered hairs should be able to deform naturally according

to their rest shapes. Hence, internal forces should be interpolated

before reconstructing positions. We call this process as force-based
position reconstruction.

Though intuitive, performing such an interpolation robustly and

efficiently is challenging. Unlike conventional gradient-domain

shape reconstruction [Huang et al. 2006; Levin et al. 2004], which

amounts to solving a linear system, the position of a Cosserat rod is

related non-linearly to forces due to the incorporation of the quater-

nion q𝑖 . Therefore, the position is typically solved using a non-linear
global optimization [Winkler et al. 2010]. However, these optimiza-

tions cannot be performed at real-time in our hair interpolation

scenario.

From another perspective, there exists a natural correspondence

between conventional rod models and differential coordinates ap-

proaches in force-based position reconstruction. Sincemost rodmod-

els [Bergou et al. 2008; Bertails et al. 2006; Kugelstadt and Schömer

2016] consider quadratic potentials with respect to strain, the poten-

tial energy derivative (i.e., force) is a simple scalar multiple of the

strain. As such, our method can also be interpreted as interpolating

strains prior to position reconstruction.

In the following, we begin with Sec. 4.1 by formulating our

constraint-based shape reconstruction scheme, which computes

positions and orientations that generate our desired internal forces.

We further propose several techniques to improve the robustness

and visual quality of our solver, including penetration resolution

(Sec. 4.2), drift correction (Sec. 4.3), and warm-starting (Sec. 4.4).

4.1 Force-based Reconstruction
Our method requires an existing method to compute interpolated

forces on each rendered hair. To this end, we employ Conventional

Linear Hair Skinning (LHS). We use the double subscript 𝑘,𝑗 to

denote the 𝑗th ordered segment on the 𝑘th guide hair. With this

notation, LHS uses a linear interpolation stencil to derive the dis-

placement of rendered hair as:

x𝑖 − x0

𝑖 =
∑︁
𝑘∈N

∑︁
𝑗

𝑤𝑖 𝑗𝑘

(
x𝑘,𝑗 − x0

𝑘,𝑗

)
, (9)

x𝑘,𝑗

x𝑘,𝑗+1

x𝑘+1, 𝑗+1
x𝑖

x𝑘+1, 𝑗 x𝑘+2, 𝑗+1

x𝑘+2, 𝑗

Scalp mesh

Fig. 3. Conventional Linear Hair Skinning (LHS). Segments from
three guide hairs (orange) form a triangular prism and are used to
interpolate the rendered hair (green) in a linear skinning fashion.

which is locally supported on the small neighborhood setN of adja-

cent guide hairs, and we again use superscript
0
to indicate rest pose.

Fig. 3 demonstrates the conventional interpolation scheme using

three guide hairs forming a triangular prism for linear skinning fash-

ion. The barycentric weights𝑤𝑖 𝑗𝑘 denote the contribution from the

𝑗th vertex of the 𝑘th guide hair to the 𝑖th vertex of a rendered hair,

which is precomputed for each rendered hair vertex x0

𝑖
. Instead of

interpolating positions, however, we adopt the linear interpolation

stencil for stretching forces:

fsim𝑖 =
∑︁
𝑘∈N

∑︁
𝑗

𝑤𝑖 𝑗𝑘 f
ss

𝑘,𝑗
, (10)

where fss
𝑘,𝑗

is the force provided by the simulator on the 𝑗 th vertex of

the 𝑘th guide hair. The superscript
sim

denotes a variable provided

by the simulator and used for reconstruction.

Our goal is then to find the set of segment positions and orienta-

tions that reproduce the target force fsim
𝑖

. This problem, however,

is significantly under-determined in general since multiple sets of

positions and orientations can reproduce the target force. To resolve

this ambiguity, we utilize the observation that orientations typically

converge very rapidly. As a result, non-zero net torques can con-

tain spurious noises, especially in a less-accurate time-integration

scheme such as XPBD [Macklin et al. 2016]. We thus decide to fur-

ther constrain our problem by assuming that the net torque 𝝉net
𝑖

= 0

within each rendered hair strand. Note that individual bending and

torque can still emerge as a part of our interpolation. We only spec-

ify the net torque at each segment. Put together, vertex positions

can be computed as the solution that matches force with zero net

torque under unit quaternion orientations. To write constraints

more precisely, we have:

∀𝑖 :


fss
𝑖
≜ 𝑘ss

𝑙𝑖

(
x𝑖+1−x𝑖

𝑙𝑖
− d𝑖,3

)
= fsim

𝑖

𝝉net
𝑖
≜ 𝝉 ss

𝑖
+ 𝝉bt

𝑖,𝑖−1
+ 𝝉bt

𝑖,𝑖
= 𝜆𝑖q𝑖

∥q𝑖 ∥ = 1

, (11)

where the Lagrangian multiplier 𝜆𝑖 is used to satisfy the unit quater-

nion constraints. As any extraneous torque along q𝑖 cannot move

the same unit quaternion q𝑖 itself, the changing of 𝜆𝑖 does not affect
the overall torque balance. Although these constraints are indepen-

dent for each rendered hair, finding a solution for this nonlinear

system is still highly non-trivial.
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To devise an efficient solver, we first note that the first set of

constraints, fss
𝑖

= fsim
𝑖

, forms a tridiagonal linear system in terms

of the vertices x𝑖 . Indeed, given the tangents d𝑖,3, we can fix x𝑖−1

and solve for x𝑖 to satisfy the 𝑖th equation. With the first vertex x0

fixed on the scalp, the linear system is fully determined and can be

solved starting at the hair root and working towards the hair tips,

leading to the following succinct formula for the vertex positions:

x𝑖 = x0 +
𝑖−1∑︁
𝑚=0

𝑙𝑚

(
fsim𝑚 𝑙𝑚

𝑘ss
+ d𝑚,3

)
. (12)

The bulk of our solver then lies in finding the correct segment

orientation with tangent d𝑖,3, which satisfies our constraint 𝝉net
𝑖

= 0
and in turn fully determines x𝑖 .
Expanding the full equations for torque (Eq. 6, Eq. 7, and Eq. 8)

and removing any scalar terms of q𝑖 , we arrive at the following

equivalent nonlinear system of equations to Eq. 11:{
−2𝑙𝑖 fsim𝑖

q𝑖e3 + 𝑘bt𝜙𝑖−1q𝑖−1q0

𝑖−1
+ 𝑘bt𝜙𝑖q𝑖+1q0

𝑖 − 𝜆𝑖q𝑖 = 0

∥q𝑖 ∥ = 1

(13)

in which fsim
𝑖

q𝑖e3 is a 4D vector. Since we only use the solution

for rendering hairs instead of simulation, we do not require solv-

ing Eq. 13 exactly. As such, we devise an approximate solution using

local constraint projections in a Gauss-Seidel fashion. Instead of

considering the entire global system at once, we satisfy the seg-

ment orientations and their associated constraints individually on a

per-segment basis in each local step.

Although the global system is nonlinear, treating the segments

locally allows us to take advantage of the linear nature of quaternion

multiplication. We arrange the torque terms into a linear system of

q𝑗 and rewrite the torque-balancing condition as:

−2𝑙𝑖 fsim𝑖
q𝑖e3 ≜ A𝑖q𝑖 = b𝑖 ≜ −𝑘bt

(
𝜙𝑖−1q𝑖−1q0

𝑖−1
+ 𝜙𝑖q𝑖+1q0

𝑖

)
, (14)

where the left-hand side is encoded as a 4 × 4 linear matrix A𝑖 , and

the right-hand side is encoded as a 4D vector b𝑖 . If we assume that

q𝑖−1 and q𝑖+1 are fixed, Eq. 13 takes the following form:{
(A𝑖 − 𝜆𝑖 I4) q𝑖 = b𝑖
∥q𝑖 ∥ = 1.

(15)

Solving the 4-dimensional sub-system Eq. 15 yields an update rule

for the orientation of a single rendered hair segment. Recall that

solving this system exactly amounts to finding the scalar 𝜆𝑖 leading

to a unit quaternion solution, which, in turn, requires solving the

quartic polynomial:

∥(A𝑖 − 𝜆𝑖 I4)−1b𝑖 ∥ = 1. (16)

Although robust algorithms such as the bisection method exist for

solving quartic polynomials, doing so for every segment of the

rendered hair is highly inefficient on the GPU. As such, we instead

propose a heuristic approach to first over-estimate 𝜆𝑖 by taking

𝜆𝑖 = ∥2𝑙𝑖 fsim𝑖
∥ + ∥b𝑖 ∥, leading to a ∥q𝑖 ∥ < 1, and then normalize q𝑖 .

To explain this approach, we introduce the following theorem:

Theorem 4.1. A𝑖 is a symmetric matrix with two pairs of eigenval-
ues at ±∥2𝑙𝑖 f sim𝑖

∥. Furthermore, the inversion of A𝑖 − 𝜆𝑖 I4 takes the

following closed form:

v ≜ −2𝑙𝑖 f sim𝑖

(A𝑖 − 𝜆𝑖 I4)−1 = 1

∥v∥2−𝜆2

©­­­­­«
𝜆 + v2 0 −v0 v1

0 𝜆 + v2 −v1 −v0

−v0 −v1 𝜆 − v2 0

v1 −v0 0 𝜆 − v2

ª®®®®®¬
.

Theorem 4.1 can be verified via the attached WxMaxima code.

Using an Eigen analysis, we can see that setting 𝜆𝑖 = ±(∥2𝑙𝑖 fsim𝑖
∥ +

∥b𝑖 ∥) would always lead to a ∥q𝑖 ∥ < 1, i.e., the magnitude of 𝜆𝑖
is over-estimated. Note that although the choice of either 𝜆𝑖 does

not affect the torque-equilibrium condition, 𝜆𝑖 can affect the local

stability of the hair strand near the configuration of q𝑖 . Indeed, if
the interpolated result is used in a hypothetical simulation, a large

positive 𝜆𝑖 would have a stabilizing effect that pushes a deviated hair

strand back to the configuration q𝑖 , i.e., our approximate solution

slightly exaggerates the stabilizing effect.

Put together, we propose the following closed-form solution for

q𝑖 : {
𝜆𝑖 ≜ ∥2𝑙𝑖 fsim𝑖

∥ + ∥b𝑖 ∥
q𝑖 ≜

(A𝑖−𝜆𝑖 I4 )−1b𝑖
∥ (A𝑖−𝜆𝑖 I4 )−1b𝑖 ∥

, (17)

which is very efficient to implement using the closed-form inversion

of A𝑖 −𝜆𝑖 I4 in Theorem 4.1. Although we slightly underestimate the

effect of the target force using this 𝜆𝑖 , in practice, we find the impact

to be minimal. Our approximate solver then only has to solve the

sub-systems from root to tip until termination conditions hold. In

the following, we propose several extensions to our interpolation

framework to improve visual quality and performance.

4.2 Penetration Correction
Penetration correction can be necessary for protruding surface fea-

tures, like ears and noses. Although our guide hair simulator already

incorporates collisions, it cannot guarantee that interpolated hairs

are penetration-free. One naive solution for resolving penetration

is to project the final position outside any colliders using a Signed

Distance Field (SDF), denoted as 𝜓 . However, as shown in Fig. 13,

projecting the final positions directly often invariably causes similar

visual artifacts in rendered hair geometry, leading to poor render

quality. This is because the orientations of hair segments are not

properly modified to reflect the shift in position due to the projec-

tion.

To make collisions handling for individual rendered hair to be

properly reflected in hair reconstruction, we introduce a SDF-based

penetration energy 𝐸
pen

𝑖
with stiffness 𝑘pen, which is defined vertex-

wise as:

𝐸
pen

𝑖
=
𝑘pen

2

min(0,𝜓 (x𝑖 ))2 . (18)

We then plug the position reconstruction Eq. 12 into 𝐸
pen

𝑖
, casting

it as a function on the segment orientations. As a result, the vertex-

wise penetration energy imposes torque locally as:

𝝉
pen

𝑖,𝑖
= −2𝑘pen𝑙𝑖 min(0,𝜓 (x𝑖 ))∇𝜓 (x𝑖 )q𝑖e3 . (19)
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Guide hairs LHS Force-based reconstruction Blend

Fig. 4. Given guide hairs, while LHS introduces zig-zag artifacts, force-based reconstruction would lead to undesired hair shapes that are far from
the guide hairs. At the rightmost, we show that simply blending those two solutions in half would not resolve the artifacts.

Following the same logic as Sec. 4.1, we can then incorporate this

term into 𝝉 ss
𝑖
in Eq. 11 by the following redefinition:

𝝉net𝑖 ≜ 𝝉 ss𝑖 + 𝝉
bt

𝑖,𝑖−1
+ 𝝉bt𝑖,𝑖 + 𝝉

pen

𝑖,𝑖
= 𝜆𝑖q𝑖 . (20)

As we typically only use a single Gauss-Seidel sweep in practice,

the SDF value of each vertex can be unknown before positions are

computed. Therefore, we choose to first solve each vertex assuming

that all 𝜓 (x𝑗 ) = 0, i.e., without considering 𝐸pen. We then query

𝜓 (x𝑗 ) at the reconstructed positions according to Eq. 12, before

performing a second solve with 𝐸pen, if needed. In practice, this

procedure can be implemented very efficiently on GPU with mar-

ginal overhead. While this approach can inherit known temporal

coherence issues from sharp SDF discontinuities, we found the per-

formance gain advantageous for our particular use case. In general,

we found the issues with SDF-caused temporal incoherence to be mi-

nor to negligible in all our examples, as shown in our supplemental

materials.

4.3 Drift Correction
Due to the discretized nature of our hair and the approximate nature

of our solutions, errors will accumulate in each hair segment as we

solve from root to tip. Since internal force is a local measure, it is

translation invariant and does not penalize translations. As such,

some hairs can drift undesirably far from the guide hairs along

the strand. This is especially problematic for strands with little

internal stress as the entire strand becomes dependent on the initial

root orientation. While we want to preserve the shape of the hair,

we also want the interpolated hair shapes to be consistent with

whose of the guide hairs. A common approach would be to correct

this error by directly blending a stable solution with the output.

Unfortunately, directly blending the reconstructed position of our

method with that from LHS would re-introduce the artifacts of

conventional interpolation schemes and diminish the benefit of our

method (see Fig. 4).

Instead, we propose a blending scheme within our force-

reconstruction framework. Note that if the interpolated force

fsim
𝑖

= 0, Eq. 15 has the following trivial solution, denoted as q̂𝑖 :

q̂𝑖 ≜
−b𝑖
∥b𝑖 ∥

and
ˆd𝑖,3 ≜ q̂𝑖e3

¯q̂𝑖 . (21)

Plugging this solution into the definition of fss
𝑖

in Eq. 11, we derive

an estimation of the stretch force
ˆfss
𝑖

as:

ˆfss𝑖 ≜
𝑘ss

𝑙𝑖

(x′
𝑖+1 − x𝑗

𝑙𝑖
− ˆd𝑖,3

)
, (22)

where x′
𝑖+1 can be any desirable position. For example, x′

𝑖+1 can be

taken from LHS-based prior works, e.g., Chai et al. [2017], to address

finer collisions. An interesting consequence is that our force-based

reconstruction can then act as a filter for physically plausible hair

geometries for any given x′
𝑖+1. However, here, we choose to use a

fast static weight LHS scheme with weights based on the closest

polyline segments. This is to avoid the requirement for training

data and for performance. Our drift correction is then achieved by

blending
ˆfss
𝑖

and fsim
𝑖

as:

fsim𝑖 ← 𝛼 ˆfss𝑖 + (1 − 𝛼)f
sim

𝑖 , (23)

where 𝛼 is taken as a small blending weight (of 0.05 ∼ 0.1 in our

examples).

4.4 Warm Starting
As we use a very small number of iterations to solve Eq. 13 in

practice for performance, the quality of the resulting quaternion sig-

nificantly relies on a reasonable initialization. One typical solution

is to use the orientation from a previous frame as the initial guess.

However, significant overheads would have to be introduced to

write back and update new solutions. Instead, we would like to opt

for a solution that allows us to discard updates without performing

memory writes. Our strategy is to assume that the bending energy

of the next segment lies in its local minimum, which is reached

when:

q𝑖+1q0

𝑖 = q𝑖 . (24)

Since the torque along q𝑖 does not affect the imaginary components,

this simply results in the corresponding term in Eq. 13 to be taken

out. This approach results in a faster hair interpolation scheme.

Finally, as an interesting side effect of our choice of warm starting,

we can safely assume that 𝜙 = 1 at all times in Cbt

𝑗
. When using

our choice of 𝜆, A𝑖 − 𝜆𝑖 I4 will always have negative eigenvalues

that result in a solution closer to the positive pole, making our

implementation slightly less complex in practice.

5 RESULTS
We implement both our simulation and interpolation using C++ and

CUDA. Unless otherwise stated, we measure performance on an

NVIDIA RTX 4090 GPU. For our simulation, we measure about 0.2

ms per 1ms timestepwith only 128 guide hairs. For our interpolation,

we split the algorithm into two CUDA kernel calls. The first kernel

call computes the internal force on each guide hair segment. The

second kernel call then uses one thread per hair to compute their

final positions in a single pass from the root to the tip. For drift

correction and as a baseline, we implement a traditional static weight

LHS scheme with weights based on the closest polyline segments.
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Algorithm 1: Pseudocode for our hair interpolation looped

over one hair strand.

foreach 𝑖 ∈ [0,Num Vertex in Hair − 1) do
// Compute target force

fsim
𝑖
← LHS based force (Eq. 10)

// Compute drift correction

x′
𝑖+1 ← LHS based position (Eq. 9)

ˆfss
𝑖
← Eq. 22 given x′

𝑖+1
fsim
𝑖
← (1 − 𝛼)fsim

𝑖
+ 𝛼 ˆfss

𝑖

// Solve for 𝜆

b𝑖 ← −𝑘bt𝜙𝑖−1q𝑖−1q0

𝑖−1

v← −2𝑙𝑖 fsim𝑖

𝜆 ← ∥v∥ + ∥b𝑖 ∥
// Use Theorem 4.1 given v, b𝑖, and normalize

q𝑖 ← [A𝑖 − 𝜆𝑖 I4]−1b𝑖
q𝑖 ← q𝑖/∥q𝑖 ∥
// Solve for x𝑖+1
x𝑖+1 ← x𝑖 + 𝑙𝑖

[
fsim
𝑖

𝑙𝑖/𝑘ss + d𝑖,3
]

// Check SDF for collision

if 𝜓 (x𝑖+1) < 0 then
// Update v and resolve

v← v − 2𝑘pen𝑙𝑖𝜓 (x𝑖+1)∇𝜓 (x𝑖+1)
𝜆 ← ∥v∥ + ∥b𝑖 ∥
q𝑖 ← [A𝑖 − 𝜆𝑖 I4]−1b𝑖/∥[A𝑖 − 𝜆𝑖 I4]−1b𝑖 ∥
x𝑖+1 ← x𝑖 + 𝑙𝑖

[
fsim
𝑖

𝑙𝑖/𝑘ss + d𝑖,3
]

end
end

In contrast to prior works that use training [Chai et al. 2017; Lyu

et al. 2022], our method requires no pre-computation, no training

data, and is simple to implement. In particular, the force reconstruc-

tion only represents some dozen extra lines of code on top of any

existing interpolation, as shown in Algorithm 1. Correspondingly,

the overhead is extremely small. To further maximize performance,

we packed the data required for force reconstruction together. For

each vertex, this consists of q𝑟, 𝑗 , 𝑙 𝑗 , and 𝑘norm, which is the nor-

malized stiffness computed by 𝑘norm = 𝑘bt/𝑘ss. Conceptually, we
divide both sides of Eq. 13 by 𝑘ss such that we only need to load

one stiffness value for each segment. For all our scenes, 𝑘pen is set

to 1𝑒4 as if it were a simple quadratic contact penalty energy.

5.1 Comparisons to LHS
We demonstrate our method on various real-world hairstyles cap-

tured from Unreal Metahumans [Epic 2024], multi-view 3D recon-

struction [Luo et al. 2013], and computed tomography [Shen et al.

2023]. As our interpolation is designed specifically for real-time

applications, we use low-resolution simulations of only 128 to 256

guide hairs each. This proves to be a very challenging use case for

traditional LHS, especially in cases involving curly hair.

Fig. 1 demonstrates this challenge. As the curls stretch, bend, and

unwind, the non-linear motion causes significant artifacts in the

fine geometry of the hair. In contrast, our method can efficiently

recreate plausible interpolated rendered hairs that visually preserve

the original hairstyle. It is true even when the same hairstyle is

simulated with 16× the number of guide hairs, as shown in Fig. 5,

which takes 1.6 ms per frame for the simulation and is too expensive

for most real-time applications. Since the issue fundamentally arises

from the shape of each individual rendered hair, adding more guide

hairs does little to rectify the artifacts. On the other hand, our

method can produce artifact-free interpolations with extremely

sparse guide hairs. Note that, as our interpolation solves for the

quasistatic shape of rendered hairs with interpolated forces, it does

not depend on or affect the dynamic state of the simulator.

Guide hair LHS Single LHS Ours
Fig. 5. Artifacts can still easily occur when the hairstyle is simulated
with a large number of guide hairs. Here, we use 2048 guide hairs.

Fig. 6 demonstrates the robustness of our method to hair length.

In this example, traditional LHS creates significant artifacts as the

long strands unwind. Even only using a single guide hair for each

rendered hair (LHS single), the simple motion of unwinding distorts

the shapes of the interpolated strands into unrecognizable zig-zags.

Our method produces artifact-free interpolations while remaining

stable despite the fast and complex swinging motions of long hairs.

Guide hair LHS Single LHS Ours
Fig. 6. When long curly hair unwinds and rotates in unpredictable
ways, even interpolating rendered hair with only one guide hair can
cause significant artifacts in hair geometry. Our method is able to
handle this case robustly and efficiently.

The visual improvements of our method are also not limited

to curly hair. The straight hairstyle in Fig. 7 exhibits significant
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artifacts with LHS, as guide hairs separate. Although this can be

remedied by restricting each rendered hair to only use a single guide

hair (as in Fig. 7 LHS single), the result creates obvious clumping

in motion. In cases where this clumping is undesirable, obtaining

robust weights without relying on training data is highly difficult.

Despite relying on the same exact interpolation method in both

force interpolation and drift correction, our method successfully

avoids the many artifacts from LHS in all our examples.

Guide hair LHS Single LHS Ours
Fig. 7. Even with straight hairstyles, both one (LHS single) and triple
(LHS) guides per rendered hair introduce odd clumping. Despite the
reliance on the same LHS scheme for interpolating forces, our method
can effectively remove the various artifacts in geometry.

To further demonstrate the robustness of our method under real-

istic motions, we test our interpolation using motion capture and

animation data in Fig. 8 and Fig. 10. As shown, animations with large

and sudden head motions very rapidly create chaotic movements

that can be unaccounted for during training or pre-computation.

Despite this, our interpolation can produce realistic interpolations

with very few guide hairs required. Fig. 9 demonstrates that visual

artifacts caused by LHS still exist even with a slow motion, while

our method remains resistant to geometric artifacts.

Performance. We present the cost of our interpolation in Table 1.

Compared to the LHS interpolation that our examples are based

on, our method only presents a 20% overhead in total interpolation

time. Even for the largest example with over 100K hair strands, our

method never required more than half a millisecond, satisfying the

real-time requirement.

Table 1. Performance of our method against LHS using three guide
hairs. Timings in microseconds (µs) per frame are measured on an
Nvidia RTX 4090 GPU. Overhead is measured by our method compared
against LHS using the same number of guide hairs per rendered hair.
Guide and rendered hairs have the same number of vertices per strand.

Guides/Hairs Vertices LHS Ours Overhead

Josh (Fig. 1) 128 / 106,686 1,706,976 283 µs 346 µs 22%

Alice (Fig. 6) 128 / 30,307 1,939,648 360 µs 425 µs 17%

Hadley (Fig. 7) 256 / 64,663 1,034,608 163 µs 199 µs 22%

Danielle (Fig. 8) 256 / 46,706 747,296 111 µs 137 µs 23%

Ablation studies. As demonstrated in Fig. 11, the decision not to

use the solution of prior frames does not significantly impact the

quality of the final results. The overall appearance of the hairstyle

remains faithful to the original from the first iteration and onwards.

Even fully allowing our method to converge, the differences are

minor. Furthermore, by eliminating the extra data movement, we

observe an over 52% speedup in interpolation time. Compared to

traditional LHS, this represents an approximate drop in overhead

from 85% to our 20%.

We perform further ablation studies in Fig. 12 and 13. In Fig. 12,

without our drift correction, strands can easily veer off course, de-

pending on the initial orientations at the hair root. This is especially

true with hairs experiencing weightlessness. With drift correction,

this issue is largely resolved with minimal degradation in final hair

geometry.

Fig. 13 demonstrates the importance of incorporating our pene-

tration energy. For sharp SDF discontinuities, simple position pro-

jections can fail to improve the result meaningfully compared to no

collisions. In contrast, our penetration energy can consider the rest

shapes for a higher-quality result.

5.2 Comparison with Neural Hair Interpolation
We compare our interpolation method with the only available open-

source neural interpolation work [Shen et al. 2023], in which a

variational autoencoder (VAE) is pre-trained to encode guide hairs

into latent vectors. These latent vectors are then interpolated based

on barycentric coordinates on the scalp and decoded into rendered

hairs. Fig. 14 presents a side-by-side comparison of a curly hairstyle

interpolated using 2048 guide hairs. The results show that our in-

terpolation can faithfully reproduce the hairstyle, while the neural

interpolation simply enriches the hair count through interpolation

without considering the rest pose of the hairstyle. Additionally,

as an offline method, Shen et al. [2023] takes 358 seconds on an

Nvidia RTX 3080 to interpolate 59220 hair strands with 256 vertices

per strand, several orders of magnitude slower than ours. Further-

more, when compared to the real-time neural interpolation proposed

by Lyu et al. [2022], which takes 151 ms to interpolate 1M vertices,

our method requires only 1.6 ms to interpolate 1M vertices (for

Hadley) when measured on the same hardware (Nvidia GTX 1080),

achieving about two orders of magnitude faster results. Notably, our

method does not necessitate the pre-simulation of a large dataset

for training.

6 CONCLUSION
We have presented a novel, robust, and efficient physical-guided

hair interpolation scheme for real-time applications. Our method

uses LHS to interpolate the physical parameters and forces already

readily available in real-time simulations, which are then used to

reconstruct the hair vertex positions. This results in an interpolator

that requires no training data and no pre-computation. We have

demonstrated the effectiveness of our approach in challenging real-

world scenarios with interpolation times far faster than alternatives,

affirming our suitability for real-time applications.

Future work and limitations. An interesting future direction

would be generalizing our method to other hair simulation
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Fig. 8. Large separations in guide hairs can often cause errors in LHS weights to amplify. Although we do not use any dynamic guide or weight
selection, our method remains resistant to geometric artifacts.
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Fig. 9. Even with a slow motion, visual artifacts caused by LHS still exist, while our method remains resistant to geometric artifacts robustly.

L
H
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Fig. 10. Despite only using 128 guide hairs, our interpolation remains robust under the large perturbations common in motion capture data.

frameworks, e.g., discrete elastic rods [Bergou et al. 2008] and

altitude springs [Selle et al. 2008]. Although our core ideas still

apply, significant work is needed to recreate our efficient constraint

solver for each framework, which is non-trivial. Our interpolation

can also be incompatible with sag-free initialization methods [Hsu

et al. 2023] that modify the rest shapes of hair strands to eliminate
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LHS Iter 1 Iter 2 Iter 3 Iter 5 Iter 32

Fig. 11. We show the result of our interpolation at various iterations starting with our initial guess in Sec. 4.4. The differences are minor, although
there are some minor differences between the first and final converged iteration. Most importantly, compared to the leftmost LHS result, our
solutions are artifact-free from the first iteration onwards, demonstrating the effectiveness of our initial guess.

Ours with 𝛼 = 0 Ours with 𝛼 = 0.05 Ours with 𝛼 = 0.1 Ours with 𝛼 = 1, same as LHS

Fig. 12. Comparison between LHS and ours with different drift correction blending parameters. Without drift correction, the flow of hairs that
experience weightlessness (with little internal stress) become almost completely dependent on the root orientation.

No collision handling Position projection Ours
Fig. 13. Directly projecting positions may result in vertices on alternating sides of a protrusion. By taking bending energies into consideration, our
SDF penalty energy avoids this issue and produces strands that favor a consistent projection direction.

Rest shape Guide hairs Ours Neural interp.

Fig. 14. Comparison with neural interpolation [Shen et al. 2023]:
given 2048 guide hairs, our interpolation can faithfully reproduce the
hairstyle, while the neural interpolation simply enriches the hair count
through interpolation without considering the rest pose of the hairstyle.

sagging at the beginning of simulations. Given that our method

relies on the natural rest shape of the hair, any modifications

introduced by sag-free initialization techniques would require extra

consideration during initialization to preserve the style and ensure

robustness. Finally, our method can exhibit less natural solutions

due to the approximate solution scheme. For real-time performance,

in particular, we do not consider the inter-segment coupling due to

the penetration constraints. Efficient and more accurate solution

techniques are left as future works.
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