
Shortest Path to Boundary for Self-Intersecting Meshes
Supplemental Document

HE CHEN, University of Utah, USA
ELIE DIAZ, University of Utah, USA
CEM YUKSEL, University of Utah & Roblox, USA

This supplemental document includes the pseudocode of our algorithm and

proof of theorems.

1 IMPLEMENTATION

1.1 Algorithms
We show the pseudocode of our algorithm to determine whether a

line segment is a valid path in Algorithm 1, the ray-triangle inter-

section algorithm in Algorithm 2, the shortest path query algorithm

in line 18 and the infeasible region culling algorithm in Algorithm 4.

We provide the proof of theorems in Section 2.

1.1.1 Explanation of the Tetrahedral Traverse Algorithm. Here we
discuss some details of Algorithm 1. We import some techniques

from the field of tetrahedral traverse based volumetric rendering to

accelerate the tetrahedral traverse procedure [Aman et al. 2022], in

which they construct a 2D coordinate system for each ray [Duff et al.

2017] and determine the ray-triangle intersection based on it. This

drastically reduced the number of arithmetic operations. Neverthe-

less, there are some robustness issues associated with tetrahedral

traverse that are still unsolved, such as dead ends and infinite loops.

In [Aman et al. 2022], they just discard the ray if it forms a loop

because one ray does not matter much among billions of rays run-

ning in parallel. In our case though, we can not do that because

that very ray may lead to the actual global geodesic path we are

looking for. Instead, we try to recover from an earlier state and get

out of the loop the other way. In addition, since we need to handle

the case of the inverted tetrahedron and the case of the ray going

backward, we modified their 2D ray-triangle intersecting algorithm

to take the orientation of the incoming into face consideration, see

Algorithm 2.

We found that the tetrahedral traverse only forms a loop when the

ray is hitting near a vertex or edge of the tetrahedron. As illustrated

by Figure 1, the ray is trying to get out of tetrahedron 𝑡0. However,

the ray is intersecting with a vertex of 𝑡0, and the ray-triangle

intersection algorithm is determining the ray intersecting with 𝑓0.

Then the algorithm will go to tetrahedron 𝑡1, and similarly it goes

to 𝑡2 and 𝑡3 through 𝑓1 and 𝑓2. However, when at 𝑡3, the ray-triangle

intersection algorithm can determine the ray intersects with 𝑓3
and put the algorithm back to 𝑡0 and thus forms an infinite loop:

𝑡0 → 𝑡1 → 𝑡2 → 𝑡3 → 𝑡0 → . . . , and the algorithm will be stuck at

this vertex. To determine whether the traverse has formed a loop,

we maintain a set T that records all the traversed tetrahedra, as

shown in line 1 of Algorithm 1, and do loop check every iteration.

After the loop is detected, we need to be able to recover from an

earlier state where the loop has not been formed. This is achieved

SIGGRAPH, August 6, 2023, Los Angeles, CA, USA
2023. ACM ISBN 978-1-4503-1234-5/22/07. . . $15.00

https://doi.org/10.1145/8888888.7777777

ALGORITHM 1: TetrahedralTraverse
Input: s: A surface point of𝑀 , 𝑡0: the tetrahedron that s belongs to,

p: the target internal point, 𝑓0: surface triangle containing s,
the deformed model𝑀 .

Output: Boolean value representing whether there is a valid

tetrahedral traverse between s and p.
1 T = ∅ ;

2 r = b − a ;
3 u, v =generateRayCoordinateSystem(r) [Duff et al. 2017];

4 𝐹 =exitFaceSelection(𝑡0, 𝑓0, u, v, s);;
5 𝑇 = ∅ ;

6 for 𝑓 in 𝐹 do
7 𝑡 =the tetrahedron on the other side of 𝑓 ;

8 𝑇 .push_back(𝑡);

9 end
10 while 𝐹 ≠ ∅ do
11 𝑓 = 𝐹 .back();

12 𝐹 .pop_back();

13 𝑡 = 𝑇 .back();

14 𝑇 .pop_back();

15 if 𝑡 ∈ T then
16 continue;

17 else
18 T = T ∪ {𝑡 };
19 if p ∈ 𝑡 then
20 return True;

21 if 𝑓 is a surface triangle then
22 return False;

23 c =the intersecting point on 𝑓 ;

24 if intersection free then
25 if |c − s | > |p − s | then
26 return False;

27 𝐹new = ExitFaceSelection(𝑡 , 𝑓 , u, v, s);
28 for 𝑓 ′ in 𝐹new do
29 𝑡 =the tetrahedron on the other side of 𝑓 ′;

30 𝑇 .push_back(𝑡);

31 𝐹 .push_back(𝑓 ′);

32 end
33 return False;

34 end

by managing a candidate intersecting face stack 𝐹 , see Algorithm 1.

As shown in Algorithm 2, we use a constant positive parameter 𝜖𝑖 to

relax the ray-triangle intersection. We regard a ray as intersecting

with a face if its close enough to its boundary. Thus a ray can inter-

sect with multiple faces of a tet. For each tetrahedron we traverse

through, we find all its intersecting faces except the incoming face

and put them to the stack 𝐹 , as shown in line 28~32 of Algorithm 1.

1

HTTPS://ORCID.ORG/0000-0002-5819-3453
HTTPS://ORCID.ORG/0009-0002-9493-1684
HTTPS://ORCID.ORG/0000-0002-0122-4159
https://doi.org/10.1145/8888888.7777777

SIGGRAPH, August 6, 2023, Los Angeles, CA, USA He Chen, Elie Diaz, and Cem Yuksel

ALGORITHM 2: ExitFaceSelection
Input: 𝑡 : the current tetrahedron; 𝑓 : the incoming face of the ray; u,

v: coordinate basis; s: ray origin.

Output: possible exiting faces of the ray.
1 p0, p1, p2 = 3 vertices on 𝑓 , ordered according to 𝑓 ’s orientation;

2 p3 = the vertex of 𝑡 that is not on 𝑓 ;

3 p′
0
, p′

1
, p′

2
, p′

3
= projectTo2D(p0 ∼ p3, u, v, s);

4 sign = signOf((p′
1
− p′

0
) × (p′

2
− p′

0
));

5 𝐹exit = ∅ ;

6 if sign·det(p′
3
, p′

1
) ≥ −𝜖𝑖 and sign·det(p′3, p′2) ≤ 𝜖𝑖 then

7 𝐹exit = 𝐹exit ∪ {𝑓0 }
8 if sign·det(p′

3
, p′

2
) ≥ −𝜖𝑖 and sign·det(p′3, p′0) ≤ 𝜖𝑖 then

9 𝐹exit = 𝐹exit ∪ {𝑓1 }
10 if sign·det(p′

3
, p′

0
) ≥ −𝜖𝑖 and sign·det(p′3, p′1) ≤ 𝜖𝑖 then

11 𝐹exit = 𝐹exit ∪ {𝑓2 }
12 return 𝐹exit

𝑡𝑡0

𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝑓𝑓0

𝑓𝑓1𝑓𝑓2

𝑓𝑓3

𝑓𝑓4

(b)(a)

Fig. 1. (a) A clip view of a tetrahedral mesh, where a ray (marked by
red arrows) is passing exactly through a vertex of a tetrahedron. (b)
Zoom in to the section where the ray-vertex intersection happens.

We also manage another stack 𝑇 to store the tetrahedron on the

other side of the face, which always has the same size as 𝐹 . When

the ray intersects with one of the vertices of the tetrahedron, we

can end up putting more than one face to 𝐹 . Then we have a while

loop that pops a face at each iteration from the end of 𝐹 and goes to

the tetrahedron on the other side of 𝑓 by popping the tetrahedron

at the end of 𝑇 , and we repeat this procedure to add more faces

and tetrahedra to the stack. Since each time the algorithm will only

pop the newest element from the stack, the traverse will perform a

depth-first-search-like behavior when no loop is detected.

In the case of a loop is detected, the algorithm will pick an in-

tersecting face from 𝐹 and a tetrahedron from 𝑇 which are added

from a previously visited tetrahedron and continue going, see lines

11~14 of Algorithm 1. Since the ray is not allowed to go back to a

tetrahedron that it has visited, this guarantees the algorithm will

not fall into an infinite loop.

1.1.2 Finding the Shortest Path to the Surface. We propose an ef-

ficient algorithm that searches for the shortest path to the surface

for an interior point p inside a tetrahedral mesh, see line 18. With a

spatial partition algorithm, we can partition all the surface elements

(i.e., all the surface triangles) of𝑀 using a spatial partition structure

(e.g., bounding box hierarchy). Then we can start a point query

ALGORITHM 3: ShortestPathToSurface
Input: An interior point p, a penetrated surface point s that is

overlapping with p.
Output: p’s shortest path to the surface.

1 𝑟 = 𝑖𝑛𝑓 ;

2 S = {all the surface triangles𝑓 };
3 while 𝑆 ≠ ∅ do
4 𝑓 = do primitives query for S centered at p with radius 𝑟 ;

5 s′ = p’s Euclidean closest point on 𝑓 ;

6 if s = s′ then
7 continue;

8 if TetrahedralTraverse(s′, p, 𝑓) then
9 𝑟 = ∥s′ − p∥;

10 S = S \ {𝑓 } ;
11 s

closest
= s ;

12 end
13 return 𝑙 (s

closest
, p)

centered at p using an infinite query radius, see line 1 and line 4 of

line 18, which will return all the surface elements sequentially in

an approximately close-to-far order. For each surface triangle 𝑓 , we

can compute p’s Euclidean closest point on 𝑓 , which we denote as

s. Then we can try to build a tetrahedral traverse from s to p using

line 18. Once we successfully find a tetrahedral traverse, there is

no need to look for a surface point further that |s − p|. Thus we
can reduce the query radius to be |s − p| every time we find a valid

tetrahedral traverse for a surface point s that has a smaller distance

to p than the current query radius, and continue querying, see the

line 9 of line 18. The query will stop after all the surface elements

within the query radius are examined. When the query stops, the

last surface point that triggers the query radius update is the closest

surface point to p that exists a tetrahedral traverse to allow 𝑙 (s, p)
to embedded to. According to Theorem 1 in the paper, 𝑙 (s, p) is the
p’s shortest path to boundary.

When Ψ is causing no inversions and non-degenerate, line 18 is

guaranteed to find the shortest path to the surface in a tetrahedral

mesh with self-intersection.

1.2 Implementation and Acceleration
We have two implementations of the tetrahedral traverse algorithm:

the static version and the dynamic version. In the static version

of the implementation, the candidate intersecting face stack 𝐹 , the

candidate next tetrahedron stack𝑇 , and the traversed tetrahedra list

T are all aligned static array on stack memory, which best utilizes

the cache and SMID instructions of the processor. Of course, the

static version of the algorithm will fail when the members in those

arrays have exceeded their capacity. In those cases, the dynamic

version will act as a fail-safe mechanism. The dynamic version

of the traverse algorithm supports dynamic memory allocation

thus those arrays can change size on the runtime. By carefully

choosing the size of those static arrays, we can make sure most of

the tetrahedral traverse is handled by the static implementation,

optimizing efficiency and memory usage.

We also add some acceleration tricks to the implementations. First,

we find that all the infinite loops encountered by the tetrahedral

2

Shortest Path to Boundary for Self-Intersecting Meshes SIGGRAPH, August 6, 2023, Los Angeles, CA, USA

ALGORITHM 4: FeasibleRegionCheck
Input: A surface point s ∈ 𝑀 , the closest type of s, an interior point

p.
Output: Boolen value representing whether there p is at s’s feasible

region.

1 switch ClosestType do
2 case At the interior do
3 return True;

4 end
5 case On an edge do
6 find two endpoints of the edge: a, b;
7 find two neighbor faces of the edge: 𝑓1, 𝑓2;

8 if (p − a) (b − a) < 𝜖𝑟 then
9 return False;

10 else if (p − b) (a − b) < 𝜖𝑟 then
11 return False;

12 n1 = normal(𝑓1) ;
13 n⊥

1
= (b − a) × n1;

14 if (p − a)n⊥
1
< 𝜖𝑟 then

15 return False;

16 n2 = normal(𝑓2) ;
17 n⊥

2
= (a − b) × n2;

18 if (p − a)n⊥
1
< 𝜖𝑟 then

19 return False;

20 end
21 case Vertex do
22 for a ∈ 𝑁𝑠 (s) do
23 if (p − s) (s − a) < 𝜖𝑟 then
24 return False;

25 end
26 end
27 return True;

28 end

traverse only contain a few tetrahedra. Actually, the size of the

loop is unbounded by the max number of tetrahedra adjacent to

a vertex/edge. In practice, the number is even much smaller than

that. Thus it is unnecessary to keep all the traversed tetrahedra in

an array and check them at every step for the loop. Instead, we only

keep the newest 16 traversed tetrahedra. In all our experiments,

we have never encountered a loop with a size larger than 16. T
is implemented as a circular array and the oldest member will be

automatically overwritten by the newest member. The array of

size 16 can be efficiently examined by the SIMD instructions. This

modification reduced about 10% of the running time of our method.

In addition, in the presence of inversions, we will stop the ray after

it has passed 2 times of the distance between p and s, instead of

waiting for it to reach the boundary. This procedure reduced 20% of

our running time.

We would like to point out that the shortest path query for each

penetrated point is embarrassingly parallel because the process can

be done completely independently. All the querying threads will

share the BVH structure of the surface and the topological structure

of the tetrahedral mesh. During the execution no modification to

those data is needed, thus no communication is needed between

ALGORITHM 5: One XPBD Time Step with Collision Handling

Input: Position of the previous step: x0, velocity of the the previous

step: v0, external force f .
Output: Position x and v velocity of the new time step.

1 update Pin and Pout by DiscreteCollisionDetection;

2 v = v0 + Δ𝑡 f ;
3 x = x0 + Δ𝑡v ;

4 XPBD material solve ;

5 C = ∅ ;

6 do in parallel
7 for s ∈ Pin do
8 if DiscreteCollisionDetection(s) then
9 p = s’s overlapping interior point;

10 s
closest

= ShortestPathToSurface(p, s);
11 C.add(CollisionConstraint(s, s

closest
)) ;

12 end
13 for s ∈ Pout do
14 if ContinuousCollisionDetection(s) then
15 s

collide
= the surface point s collide with;

16 C.add(CollisionConstraint(s, s
collide

)) ;

17 end
18 end
19 for 𝑐 ∈ C do
20 project constraint c;

21 end
22 v = (x − x0)/Δ𝑡

those threads. Also, our shortest path querying algorithm, especially

the version with static arrays, can be efficiently executed on GPU.

1.3 Collision Handling Framework
We provide the pseudocode of our XPBD framework (see line 22)

and our implicit Euler framework line 22. At the beginning of both

frameworks, we separate all the surface points (edges can also be

included) into two categories: initially penetrated points Pin and

initially penetration-free points Pout. For the XPBD framework,

we apply collision constraints at the end of each time step, after

the object has been moved by the material and the external force

solving. Thus another DCD must be applied to every point in Pin to

re-detect the tetrahedra including it for the purpose of shortest path

query. In the implicit Euler framework, we only need to do DCD

once because the collisions are built into the system as a penalty

force and solved along with other forces. We use friction power that

points to the opposite direction of the velocity and is proportional

to the contact force.

Note that when solving models with existing significant self-

intersections, we turn off CCD and set Pout = ∅. Pin will not only

contains surface points, but also all the interior vertices and all

tetrahedra’s centroids to resolve the intersection in the completely

overlapping parts.

2 PROOF OF THEOREMS

2.1 Theorem 1
We first prove this lemma:

3

SIGGRAPH, August 6, 2023, Los Angeles, CA, USA He Chen, Elie Diaz, and Cem Yuksel

ALGORITHM 6: One Implicit Euler Time Step with Collision Han-

dling

Input: Position of the previous step: x0, velocity of the the previous

step: v0, external force f .
Output: Position x and v velocity of the new time step.

1 update Pin and Pout by DiscreteCollisionDetection;

2 C = ∅ ;

3 do in parallel
4 for s ∈ Pin do
5 p = s’s overlapping interior point;
6 s

closest
= ShortestPathToSurface(p, s);

7 C.add(CollisionConstraint(s, s
closest

)) ;

8 end
9 for s ∈ Pout do

10 if ContinuousCollisionDetection(s) then
11 s

collide
= the surface point s collide with;

12 C.add(CollisionConstraint(s, s
collide

)) ;

13 end
14 end
15 Evaluate penetration force and its Jacobian (i.e. the Hessian of the

penetration energy) ;

16 Evaluate internal force and its Jacobian (i.e. the Hessian of the

elasticity energy);

17 Evaluate external forces ;

18 Build and solve implicit Euler system to obtain x and v [Baraff and

Witkin 1998] ;

𝜕𝜕 �𝑀𝑀 Ψ(𝜕𝜕 �𝑀𝑀)

�̅�𝐴0

�̅�𝒍 (𝑡𝑡) �𝒄𝒄 (𝑡𝑡) 𝐜𝐜(𝑡𝑡)

𝐴𝐴0

𝐡𝐡(𝑢𝑢0, 𝑡𝑡)

𝒍𝒍(𝑡𝑡)

�̅�𝐡 (𝑢𝑢0, 𝑡𝑡)

Ψ−1

(a) (b)

Fig. 2. Constructing the undeformed pose curve. (a) The undeformed
pose. (b) The deformed pose.

Lemma 1. For any point p ∈ 𝑀 , its shortest path to the boundary
as p is a line segment.

Proof. Let’s assume that p’s shortest path to boundary as p is

not a line segment, and p’s closest boundary point as as p is s (as
s). Then there must be a curve on the undeformed pose: c(𝑡) : 𝐼 ↦→
𝑀, c(0) = p, c(1) = s, s.t., c(𝑡) = Ψ(c(𝑡)) is p’s shortest path to

boundary.

Since∇Ψ > 0, we know thatΨ is locally bijective. Thus, according

to Heine–Borel theorem [Borel 1895], we can have a limited number

of open sets A covering 𝑀 , such that Ψ is bijective on each open

set in A. We can select a subset A0 ⊆ A, such that c(𝐼) is totally
contained by 𝐴0= the union of A0, see Figure 2a.

We then construct a cluster of curves: h(𝑢, 𝑡) = 𝑢c(𝑡)+ (1−𝑢)l(𝑡) :
𝐼 × 𝐼 ↦→ 𝑀 , such that, h(0, 𝑡) = c(𝑡), h(1, 𝑡) = l(𝑡),∀𝑡 ∈ 𝐼 , where l(𝑡)
is the line segment from p to s, see Figure 2b. h(𝑢, 𝑡) will smoothly

deformed from c(𝑡) to l(𝑡) as 𝑢 changes from 0 to 1. Note that any

moment 𝑢, the length of the curve: c𝑢 (𝑡) = h(𝑢, ·) must be shorter

than c(𝑡).
Since c(𝐼) ∈ 𝐴0 = Ψ(𝐴0), there must exist a 𝑢0 > 0, such that,

h([0, 𝑢0], 𝐼) ∈ 𝐴0. Additionaly, because Ψ is bijective on 𝐴0, we can

define a undeformed pose curve cluster: h(𝑢, 𝑡) = Ψ−1 (h(𝑢, 𝑡)) :

[0, 𝑢0] × 𝐼 ↦→ 𝐴0, as shown in Figure 2a.

We can then select another group open setA1 containing h(𝑢0, 𝐼),
and repeat the above procedure. This will give us another cluster of

curves: h(𝑢, 𝑡) = Ψ−1 (h(𝑢, 𝑡)) : [𝑢0, 𝑢1] × 𝐼 ↦→ 𝐴0. During such pro-

cess, the curve will not touch the boundary of the model, otherwise,

there will be a shorter curve connecting p and the boundary, which

violates our assumption. Since A is a limited set, we can eventually

obtain a h(𝑢, 𝑡) : [𝑢𝑘 , 1] × 𝐼 ↦→ 𝑀 within a limited 𝑘 + 1 steps, such

that Ψ(h(1, 𝑡)) = l(𝑡),∀𝑡 ∈ 𝐼 , h(1, 0) = p and h(1, 1) = s.
Here we have proved that l(𝑡) is a valid path, which must be

shorter than c(𝑡) due to Euclidean metrics. Hence creating a contra-

diction. □

With Lemma 1, the proof of Theorem 1 becomes trivial. Since

the shortest path to the boundary must be a valid path, of course it

should be the shortest valid line segment to boundary.

2.2 Theorem 2
The proof of Theorem 2 is similar to Theorem 1. Say the closest

boundary point is s′ ∈ 𝑓 (as s′) and the Euclidean closest boundary

point on 𝑓 is s (as s), where 𝑓 is a boundary face. We also construct

a cluster of curves: h(𝑢, 𝑡) = 𝑢l(𝑡) + (1 − 𝑢)l′(𝑡)𝐼 × 𝐼 ↦→ 𝑀 , where

l′(𝑡) and l(𝑡) are the line segment from p to s′ and s, respectively.
This h(𝑢, 𝑡) also holds the property that at any given moment 𝑢, the

length of the curve: c𝑢 (𝑡) = h(𝑢, ·) must be shorter than l′(𝑡).
Note that instead of fixing two ends, we only fix one end of

h(𝑢, 𝑡), as it deforms from l′(𝑡) to l(𝑡). Because Ψ is bijective on

each boundary face, we can explicitly construct the line segment

on the undeformed pose that goes from s′ and s, this allows us to
move the position of the end point.

Similar to Lemma 1, we can induce a cluster of curves on the

undeformed pose: h(𝑢, 𝑡), which will give us the pre-image of l(𝑡)
as h(1, 𝑡), connecting p and s. Hence we have proven that l(𝑡) is
also a valid path from p to s. This contradicts the assumption that

s′ is the closest boundary point.

2.3 Element Traverse and Valid Path
We can give an equivalent definition of a curve being a valid path

in the discrete case.

Theorem Supplementary 1. A line segment connecting a ∈ 𝑒𝑎
and b ∈ 𝑒𝑏 in a mesh, is a valid path if and only it is included by
element traverse from 𝑒𝑎 to 𝑒𝑏 .

Proof. Sufficiency. If there exists such a element traverse

T (a, b) = (𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑘−1, 𝑒𝑘), s.t., 𝑒0 = 𝑒𝑎 and 𝑒𝑘 = 𝑒𝑏 , we

can explicitly construct a continuous piece-wise linear curve c(𝑡)
defined on them, whose image is c(𝑡). We do this by making a

division of 𝐼 : 𝐼 = [𝑡0, 𝑡1] ∪ [𝑡1, 𝑡2] ∪ [𝑡2, 𝑡3] ∪ · · · ∪ [𝑡𝑘−1, 𝑡𝑘], where
𝑡0 = 0, 𝑡𝑘 = 1, 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑘 . The division can be obtained

by making
𝑡𝑖
𝑡𝑖+1

=
|r𝑖−rr+1 |
|r𝑖+1−r𝑖+2 | ,∀𝑖 = 1, 2, . . . , 𝑘 + 1, where r𝑖 = Ψ|−1𝑒𝑖 (r𝑖)

4

Shortest Path to Boundary for Self-Intersecting Meshes SIGGRAPH, August 6, 2023, Los Angeles, CA, USA

is the preimage of the line segment’s exit point from 𝑒𝑖 . The curve

can be constructed as:

c(𝑡) = 𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
r𝑖 + (1 − 𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
)r𝑖+1, if 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] (1)

Necessity. Suppose we have a curve on the undeformed pose c(𝑡)
connecting a, b, whose image under Ψ is a line segment. If c(𝑡)
passes no vertex of 𝑀 , we directly obtain an element traversal by

enumerating the elements that c(𝑡) passes by as 𝑡 continuously

changes from 0 to 1.

When c(𝑡) passes a vertex v of𝑀 , assume it goes from 𝑒𝑖 to 𝑒𝑖+1 at
that point. According to the definition of a manifold, we can search

around that v and guarantee to have an element traversal from 𝑒𝑖
to 𝑒𝑖+1 formed by elements adjacent to v.
The case of c(𝑡) passing an edge can be proved similarly.

□

2.4 Further Discussion on Inverted Elements
As we can see from Figure 6b of the paper, the line segment sp is

only a subset of such a path constructed by our algorithm. In fact,

in this case, the length of path c(𝑡) is evaluated by this formula:∫
1

0

𝑠𝑖𝑔𝑛((s − p)𝑟 ′(𝑡) |𝑟 ′(𝑡) |𝑑𝑡 (2)

which means, in the presence of inverted tetrahedra, that the length

of c(𝑡) grows as it goes in the direction of s−p, and decreases if it goes
in the opposite direction, which happens when it passes through the

inverted tetrahedron. This is understandable because when solving

the self-intersection, the penetrated point does not need to go back

and forth, it only needs to pass through the overlapping part once.

Thus the length of the overlapping part should only count once.

With inverted tetrahedra, line 18 is actually constructing the shortest

line segment connecting p and a surface point under the metrics

introduced by Eq.2.

REFERENCES
Aytek Aman, Serkan Demirci, and Uğur Güdükbay. 2022. Compact tetrahedralization-

based acceleration structures for ray tracing. Journal of Visualization (2022), 1–13.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques. 43–54.

Émile Borel. 1895. Sur quelques points de la théorie des fonctions. InAnnales scientifiques
de l’École normale supérieure, Vol. 12. 9–55.

Tom Duff, James Burgess, Per Christensen, Christophe Hery, Andrew Kensler, Max

Liani, and Ryusuke Villemin. 2017. Building an orthonormal basis, revisited. JCGT
6, 1 (2017).

5

	Abstract
	1 Implementation
	1.1 Algorithms
	1.2 Implementation and Acceleration
	1.3 Collision Handling Framework

	2 Proof of Theorems
	2.1 Theorem 1
	2.2 Theorem 2
	2.3 Element Traverse and Valid Path
	2.4 Further Discussion on Inverted Elements

	References

