
Vertex Block Descent
ANKA HE CHEN, University of Utah, USA
ZIHENG LIU, University of Utah, USA
YIN YANG, University of Utah, USA
CEM YUKSEL, University of Utah, USA and Roblox, USA

Fig. 1. Example simulation results using our solver, both of those methods involve more than 100 million DoFs and 1 million active collisions.

We introduce vertex block descent, a block coordinate descent solution for
the variational form of implicit Euler through vertex-level Gauss-Seidel
iterations. It operates with local vertex position updates that achieve reduc-
tions in global variational energy with maximized parallelism. This forms a
physics solver that can achieve numerical convergence with unconditional
stability and exceptional computation performance. It can also fit in a given
computation budget by simply limiting the iteration count while maintaining
its stability and superior convergence rate.

We present and evaluate our method in the context of elastic body dy-
namics, providing details of all essential components and showing that it
outperforms alternative techniques. In addition, we discuss and show exam-
ples of how our method can be used for other simulation systems, including
particle-based simulations and rigid bodies.

CCS Concepts: • Computing methodologies→ Physical simulation;
Collision detection.

Additional Key Words and Phrases: physics-based simulation, elastic body,
rigid body, time integration

ACM Reference Format:
Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel. 2024. Vertex Block
Descent. ACM Trans. Graph. 43, 4, Article 116 (July 2024), 16 pages. https:
//doi.org/10.1145/3658179

Authors’ Contact Information: Anka He Chen, ankachan92@gmail.com, University
of Utah, Salt Lake City, UT, USA; Ziheng Liu, NA, University of Utah, Salt Lake City,
UT, USA; Yin Yang, NA, University of Utah, Salt Lake City, UT, USA; Cem Yuksel,
cem@cemyuksel.com, University of Utah, Salt Lake City, UT, USA and Roblox, Salt
Lake City, UT, USA.

© 2024 Copyright held by the owner/author(s).
ACM 1557-7368/2024/7-ART116
https://doi.org/10.1145/3658179

1 INTRODUCTION
Physics-based simulation is the cornerstone of most graphics ap-
plications and the demands from simulation systems to deliver im-
proved stability, accelerated computational performance, and en-
hanced visual realism are ever-growing. Particularly in real-time
graphics applications, the stability and performance requirements
are so strict that realism can sometimes be begrudgingly considered
of secondary importance.

Notwithstanding the substantial amount of research and ground-
breaking discoveries made on physics solvers over the past decades,
existing methods still leave some things to be desired. They either
deliver high-quality results, but fail to meet the computational de-
mands of many applications or fit in a given computation time by
sacrificing quality. Stability, on the other hand, is always a challenge,
particularly with strict computation budgets.
In this paper, we introduce vertex block descent (VBD), a physics

solver that offers unconditional stability, superior computational
performance than prior methods, and the ability to achieve nu-
merical convergence to an implicit Euler integration. Though our
method is a general solution that can be used for a variety of simu-
lation problems, we present and evaluate it in the context of elastic
body dynamics. Then, we briefly discuss how our method can be
applied to some other simulation systems, including particle-based
simulations and rigid bodies.
Our VBD method is based on block coordinate descent that per-

forms vertex-based Gauss-Seidel iterations to solve the variational
form of implicit Euler. For elastic body dynamics, each iteration
runs a loop over the mesh vertices, adjusting the position of a single
vertex at a time, temporarily fixing all others. This offers maxi-
mized parallelism when coupled with vertex-based mesh coloring,
which can achieve an order of magnitude fewer colors (i.e. serialized

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution International 4.0 License.

HTTPS://ORCID.ORG/0000-0002-5819-3453
HTTPS://ORCID.ORG/0009-0008-5031-5074
HTTPS://ORCID.ORG/0000-0001-7645-5931
HTTPS://ORCID.ORG/0000-0002-0122-4159
https://doi.org/10.1145/3658179
https://doi.org/10.1145/3658179
https://orcid.org/0000-0002-5819-3453
https://orcid.org/0009-0008-5031-5074
https://orcid.org/0000-0001-7645-5931
https://orcid.org/0000-0002-0122-4159
https://doi.org/10.1145/3658179
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658179&domain=pdf&date_stamp=2024-07-19

116:2 • Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel

Fig. 2. Twisting two beams together, totaling 97 thousand vertices and
266 thousand tetrahedra, demonstrating complex frictional contact
and buckling.

workloads) as compared to element-based parallelization. Our local
position-based updates can ensure that the variational energy is
always reduced. Therefore, our method maintains its stability even
with a single iteration per time step and large time steps, operating
with unconverged solutions containing a large amount of resid-
ual. With more iterations, it converges faster than its alternatives.
Thus, it can more easily fit in a given computation budget, while
maintaining stability with improved convergence.
We present all essential components of using VBD for elastic

body dynamics, including formulations for damping, constraints,
collisions, and friction. We also introduce a simple initialization
scheme to warm-start the optimization and improve convergence. In
addition, we discuss momentum-based acceleration techniques and
parallelization in the presence of dynamic collisions. Our evaluation
includes large simulations (Figure 1) and stress tests (e.g. Figure 2 and
3) that demonstrate VBD’s performance, scalability, and stability.

2 RELATED WORK
There is a large body of work on physics-based simulation in com-
puter graphics. Here we only discuss the recent and the most rele-
vant work to our method.

Implicit time integrators are widely accepted as the primary
methods for simulating elastic bodies in computer graphics due
to their exceptional stability, especially when addressing stiff prob-
lems. Among these options, backward Euler [Baraff and Witkin
1998; Hirota et al. 2001; Martin et al. 2011; Volino and Magnenat-
Thalmann 2001] is the most commonly utilized method, though
other approaches like implicit Newmark [Bridson et al. 2002, 2005;
Kane et al. 2000], BDF2 [Choi and Ko 2005; Hauth and Etzmuss 2001],
and implicit-explicit [Eberhardt et al. 2000; Stern and Grinspun 2009]
have also been explored. Backward Euler is often approximated as
a single Newton step, solving a linear system of equations [Baraff
and Witkin 1998]. Line search can be applied to improve robustness
[Hirota et al. 2001]. Preconditioning [Ascher and Boxerman 2003]
or positive-definite projection [Teran et al. 2005] can be used to
improve convergence. To circumvent a full linear solve for every
Newton step, Cholesky factorization [Hecht et al. 2012] emerges
as a viable strategy. Techniques like multi-resolution [Capell et al.
2002; Grinspun et al. 2002] or multigrid [Bolz et al. 2003; Tamstorf
et al. 2015; Wang et al. 2020; Xian et al. 2019; Zhu et al. 2010] solvers
project finer details onto a coarser grid with fewer degrees of free-
dom, effectively reducing the computational cost of the linear system
solver. Our solution linearizes the forces locally, avoiding the global
linear system, and it converges to the same result as backward Euler
with multiple Newton steps.

Fig. 3. Stress tests that begin simulations under extreme deformations:
(top) a perfectly flattened armadillo model with 15 thousand vertices
and 50 thousand tetrahedra, and (bottom) a Utah teapot model with 2
thousand vertices and 8.5 thousand tetrahedra, deformed by randomly
placing its vertices onto the surface of a sphere. Both models quickly
recover to their original shape shortly after the simulation starts. Both
simulations use accelerated iterations with 𝜌 = 0.95.

Additionally, stiffness warping [Müller et al. 2002] repurposes the
stiffness matrix from the rest shape to handle significant rotational
deformations. Using a quasi-Newtonmethod [Liu et al. 2017] with an
approximate Hessian can be far more cost-effective for computing
its inverse with prefactoring than the actual Hessian. Example-based
dynamics has also been explored [Chao et al. 2010; Martin et al. 2011;
Müller et al. 2005], where the deformation energy is defined based
on the nearest point in the example space. Projective Dynamics
[Bouaziz et al. 2023] represents deformation energy via a series of
constraints that can be solved independently, then synchronized
either through a prefactorized global step to accelerate convergence.
The relation between dynamics, energy, and minimization has

been leveraged in variational integrators [Kane et al. 1999, 2000;
Kharevych et al. 2006; Lew et al. 2004; Simo et al. 1992]. Reformu-
lating backward Euler to an optimization problem combined with
optimization techniques to allows the usage of large steps [Gast et al.
2015; Martin et al. 2011]. Domain-decomposed optimization for solv-
ing the nonlinear problems of implicit numerical time integration
can accelerate convergence Li et al. [2019]. Yet, the optimization
formulation has its drawbacks, notably the varying problem formu-
lation and initial positions in each step. Consequently, achieving
consistent convergence within a fixed time budget becomes chal-
lenging. Real-time simulators compromise by accepting partially
converged results, which visually resemble the final solution. Un-
fortunately, this compromise can lead to significant visual artifacts
mainly due to retained residuals from earlier steps, which can ac-
cumulate across frames and can jeopardize the solver’s stability.
Our method, as illustrated in Figure 16, demonstrates exceptional
stability even when retaining a substantial amount of residual with
a limited number of iterations.
Position-based dynamics methods (PBD [Müller et al. 2007] and

XPBD [Macklin et al. 2016]) convert forces into (soft) constraints
and directly update the positions with Gauss-Seidel iterations op-
erating on one constraint at a time. These position-based updates
result in exceptional stability, which is often exploited by limiting
the number of iterations to fix the computation cost, an effective
strategy for real-time simulations. Akin to PBD, our method also

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

Vertex Block Descent • 116:3

works with position updates, but operates directly using the force
formulations without converting them to constraints. Parallelization
with XPBD is achieved by graph coloring the constraints (i.e. the
dual graph) [Fratarcangeli and Pellacini 2015; Fratarcangeli et al.
2016; Ton-That et al. 2023]. However, this dual graph contains multi-
ple times more connections (depending on the types of constraints)
than the original graph of vertices, severely limiting the level of
parallelism. In comparison, our method is parallelized by coloring
the original graph, which leads to much fewer colors (i.e. computa-
tion groups that must be processed sequentially) and thereby better
parallelism. More importantly, the approximations in XPBD’s for-
mulation introduce errors that make it diverge from the solution of
implicit Euler and can degrade realism, particularly with large time
steps and limited iteration count, which are common in practice. In
addition, XPBD particularly struggles with high mass ratios. Our
method, on the other hand, has none of these problems.

In recent years, a growing effort has been placed on accelerating
simulations using GPUs [Huthwaite 2014; Lan et al. 2022; Li et al.
2020b, 2023; Macklin et al. 2020; Wang 2015; Wang and Yang 2016].
Among them, the first-order descent methods [Macklin et al. 2020;
Wang and Yang 2016] have gained popularity due to their excellent
parallelism. These methods employ a Jacobi-style preconditioned
first-order descent on the backward Euler minimization formula-
tion, enabling full vertex-level parallelization. However, Jacobi-style
iterations typically converge substantially slower than Gauss-Seidel
iterations. Also, such methods necessitate a line search to avoid
overshooting and ensure stability.
Our method can be categorized as a coordinate descent method

for optimization [Wright 2015]. In graphics, this technique has been
used for geometric processing [Naitsat et al. 2020] and simulation
with a barrier function [Lan et al. 2023]. Recently, Lan et al. [2023]
proposed a hybrid scheme where Gauss-Sediel and Jacobi iterations
are combined at each parallel call. In comparison, our method uses
blocks of coordinates based on vertices instead of blocks based on
elements, which results in much better parallelism and smaller local
linear systems to solve, leading to faster convergence. Concurrently,
Y.Chen et al. [2024] present a similar approach to ours for simulating
quasistatic hyberelasticity.

3 VERTEX BLOCK DESCENT FOR ELASTIC BODIES
Our vertex block descent method is essentially a solver for optimiza-
tion problems. Therefore, it can be applied to various simulation
problems, particularly if they can formulated as an optimization
problem. In this section, we explain our method in the context of
elastic body dynamics for objects represented by a set of vertices
that carry mass and a set of force elements and constraints that act
on them. Generalization of our method to other example simulation
problems is discussed later in Section 6.

We begin with deriving our global optimization method that splits
the simulated system into vertex-level local systems (Section 3.1).
Then, we discuss the methods we use for solving the local systems
(Section 3.2) and describe how we incorporate damping (Section 3.3)
and constraints (Section 3.4). We present our collision formulation
(Section 3.5) and friction formulation (Section 3.6). After explaining
our methods for warm-starting our optimization to improve con-

vergence (Section 3.7), we describe how to incorporate momentum-
based acceleration to improve convergence (Section 3.8). Finally, we
discuss the improved parallelization that our method provides along
with methods for efficiently parallelizing dynamically-introduced
force elements due to varying collision events (Section 3.9).

3.1 Global Optimization
Our vertex block descent method is formulated based on the opti-
mization form of implicit Euler time integration [Gast et al. 2015;
Martin et al. 2011]. Given a system with 𝑁 vertices, we represent
the state of our simulation at step 𝑡 as (x𝑡 , v𝑡), where x𝑡 ∈ R3𝑁

and v𝑡 ∈ R3𝑁 are the concatenated position and velocity vectors,
respectively. The resulting optimization problem can be written as

x𝑡+1 = argmin
x

𝐺 (x) , (1)

for evaluating the positions at the end of the time step x𝑡+1 that
minimizes the variational energy 𝐺 (x) in the form of

𝐺 (x) = 1
2ℎ2
∥x − y∥2𝑀 + 𝐸 (x) . (2)

The first term here is the inertia potential, which contains the time
step size ℎ, the mass-weighted norm ∥·∥𝑀 , and

y = x𝑡 + ℎv𝑡 + ℎ2aext (3)

with a fixed external acceleration aext, such as gravity. The second
term 𝐸 (x) is the total potential energy evaluated at x.
We propose an optimization technique that falls under the cat-

egory of coordinate descent methods to efficiently minimize this
energy 𝐺 . If we only modify a single vertex at a time, fixing all
other vertices, the part of the energy term 𝐸 (x) that is affected only
includes the set of force elements F𝑖 that are acting on (or using the
position of) vertex 𝑖 . Thus, we define the local variational energy 𝐺𝑖

around vertex 𝑖 as

𝐺𝑖 (x) =
𝑚𝑖

2ℎ2
∥x𝑖 − y𝑖 ∥2 +

∑︁
𝑗∈F𝑖

𝐸 𝑗 (x) , (4)

where 𝑚𝑖 is the mass of the vertex and 𝐸 𝑗 is the energy of force
element 𝑗 in F𝑖 .

Note that 𝐺 is not equal to the sum of local variational energies,
i.e. 𝐺 (x) ≠ ∑

𝑖 𝐺𝑖 (x), simply because the force elements appear
multiple times in this sum (once for each of its vertices). However,
when we modify the position of a single vertex only, the reduction
in 𝐺𝑖 is equal to the resulting reduction in 𝐺 .

Based on this observation, our method operates on a single vertex
at a time and updates its position by minimizing the local energy

x𝑖 ← argmin
x𝑖

𝐺𝑖 (x) (5)

and solves the global system using Gauss-Seidel iterations. Each
local minimization for a vertex effectively finds a descent step for
𝐺 using the degrees of freedom (DoF) for the vertex as a block of
coordinates, hence the name vertex block descent (VBD). After each
iteration, the total reduction in𝐺 is equal to the sum of all reductions
in 𝐺𝑖 . In other words, the energy change of each vertex position
adjustment is accumulated to the system energy. Consequently, if
we can make sure that each local energy drops 𝐺𝑖 when we are

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

116:4 • Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel

adjusting vertex 𝑖 , we can guarantee that we are descending the
system energy 𝐺 .
Thus, our system directly operates on vertex positions and the

resulting velocities are calculated following the implicit Euler for-
mulation

v𝑡+1 =
1
ℎ

(
x𝑡+1 − x𝑡

)
. (6)

3.2 Local System Solver
The position updates per vertex (in Equation 5) involve solving a
local system that only depends on the position change of a single
vertex, represented by 𝐺𝑖 . Note that Equation 4 only has 3 DoF, so
the cost of evaluating and inverting its Hessian is much cheaper
compared to the global problem in Equation 2. Therefore, we can
fully utilize the second-order information and use Newton’s method
to minimize the localized energy 𝐺𝑖 , which involves solving the 3D
linear system

H𝑖 Δx𝑖 = f𝑖 , (7)

where Δx𝑖 is the change in position, f𝑖 is the total force acting on
the vertex, calculated using

f𝑖 = −
𝜕𝐺𝑖 (x)
𝜕x𝑖

= −𝑚𝑖

ℎ2
(x𝑖 − y𝑖) −

∑︁
𝑗∈F𝑖

𝜕𝐸 𝑗 (x)
𝜕x𝑖

, (8)

and H𝑖 ∈ R3×3 is the Hessian of𝐺𝑖 with respect to the DoF of vertex
𝑖 , such that

H𝑖 =
𝜕2𝐺𝑖 (x)
𝜕x𝑖 𝜕x𝑖

=
𝑚𝑖

ℎ2
I +

∑︁
𝑗∈F𝑖

𝜕2𝐸 𝑗 (x)
𝜕x𝑖 𝜕x𝑖

. (9)

Here, the first term is a diagonal matrix and the second one is
the sum of Hessians of the force elements with respect to vertex 𝑖 .
Intuitively, the solution of this linear system is the extreme point of
the quadratic approximation for the localized energy𝐺𝑖 . By reducing
𝐺𝑖 with each iteration, we can guarantee a reduction in 𝐺 , thereby
iteratively solving the global system in Equation 2.
We can analytically solve this system using Δx𝑖 = H−1

𝑖
f𝑖 . For

such a small system, the analytical solver is very efficient and stable.
We found it to be faster than solvers based on Conjugate Gradient or
LU/QR decomposition. Another advantage of the analytical solver
is that it does not require the Hessian to be positive-definite. Of
course, when the Hessian is not positive-definite, the direction given
by Equation 7 may not be a descent direction. Nevertheless, we
opt for this direction regardless, recognizing that even when H𝑖 is
not positive-definite, solving Equation 7 still brings us towards the
extremum of the quadratic approximation for the localized energy
𝐺𝑖 . This solution is close to where the gradient of the inertia and
the potential terms balance out and it is usually a stable state of
the system. Also, the motivation of the variational form of implicit
Euler (Equation 2), is to find a point where 𝑑𝐺 (x)/𝑑x = 0. Therefore,
any extreme point is a valid solution of implicit Euler, and it does
not have to be a local minimum. In all our experiments, including
those specifically designed stress tests (see Figure 2 and Figure 3),
we have consistently observed that this scheme does not pose any
issues concerning system stability or convergence.
An alternative solution to this is the PSD Hessian projection

[Teran et al. 2005]. However, it is exceptionally rare for the Hessian

to not be positive-definite, and the PSD projection process is notably
costly due to multiple SVD decompositions. Engaging in this costly
operation to prevent such rare events seems unjustified, especially
considering that these occurrences do not jeopardize system stability
or convergence significantly.

Another challenge with the analytical solver arises when encoun-
tering a (nearly) rank-deficient Hessian. To address this, we propose
a simple solution: if | det(H𝑖) | ≤ 𝜖 for some small threshold 𝜖 , we opt
to bypass adjusting this particular vertex for that iteration. Given
that its neighboring vertices are likely to undergo adjustments be-
fore the next iteration, it is improbable that its Hessian will remain
rank-deficient in subsequent iterations. With this simple solution,
in the extreme scenario where all vertices possess a rank-deficient
Hessian, the system could potentially become frozen. Yet, it is cru-
cial to note that such a case is highly improbable, since the Hessian
of the inertia potential is always full-rank. One potential remedy for
this would be switching to the modified Conjugate Gradient solver
[Lan et al. 2023] when such a case happens. However, doing this
will add additional branching to the code and can slow down the
solver. Thus, we have not included it in our implementation, but,
depending on specific use cases, there is always the flexibility to opt
for the Conjugate Gradient solver as a backup solution.

The linear system in Equation 7 corresponds to a single Newton
step, so it does not necessarily provide the optimal solution for
Equation 5. In fact, since it is just a second-order approximation of𝐺𝑖 ,
it does not even guarantee a reduction in 𝐺𝑖 . To ensure the descent
of energy with this single step, we can incorporate a backtracking
line search along the descent direction. Note that, unlike global line
searches in descent-based simulation methods (e.g. Wang and Yang
[2016]), this line search operates locally. It specifically verifies the
descent of 𝐺𝑖 , which in turn guarantees a descent in𝐺 without the
need for evaluating the global system.
Line search avoids over-shooting and, thereby, ensures stability.

In practice, however, the additional computation cost of line search
may not be justified. In our experiments, we found that line search
costs an extra 40% computation time, while not providing any mea-
surable benefits. This is because VBD can maintain stability even
without line search. Therefore, the results we present in this paper
do not include line search, though it is an option available.

3.3 Damping
Damping plays a crucial role in simulations. It prevents excessive
oscillations and also enhances system stability. Despite the inherent
numerical damping introduced by the implicit Euler method, pro-
viding users with manual control over damping is highly desirable.
To address this, we have integrated a simplified Rayleigh damping
model into our solver [Sifakis and Barbic 2012]. This process is both
straightforward and efficient, as it also operates locally within the
3 × 3 system and utilizes the precomputed stiffness matrix.
Since we are relying on implicit Euler, we can represent the ve-

locity as position change, using v𝑖 = (x𝑖 − x𝑡
𝑖
)/ℎ. Then, we can add

the damping term to the Hessian in Equation 9, resulting

H𝑖 =
𝑚𝑖

ℎ2
I +

∑︁
𝑗∈F𝑖

𝜕2𝐸 𝑗 (x)
𝜕x𝑖 𝜕x𝑖

+ ©«
∑︁
𝑗∈F𝑖

𝑘𝑑

ℎ

𝜕2𝐸 𝑗 (x)
𝜕x𝑖 𝜕x𝑖

ª®¬ , (10)

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

Vertex Block Descent • 116:5

x

x

(a) Edge-edge

x

x

(b) Vertex-triangle

Fig. 4. Two collision types: (a) edge-edge can have at most two pairs
and (b) vertex-face can have at most one pair with the same color,
since vertices on the same side of a collision must have different colors.

where 𝑘𝑑 is the damping coefficient. Finally, we add the damping
force to Equation 8 using the same damping term, such that

f𝑖 = −
𝑚𝑖

ℎ2
(x𝑖 − y𝑖) −

∑︁
𝑗∈F𝑖

𝜕𝐸 𝑗 (x)
𝜕x𝑖

− ©«
∑︁
𝑗∈F𝑖

𝑘𝑑

ℎ

𝜕2𝐸 𝑗 (x)
𝜕x𝑖 𝜕x𝑖

ª®¬
(
x𝑖 − x𝑡𝑖

)
.

(11)

3.4 Constraints
Since our method directly manipulates the position of each ver-
tex, managing a constraint on a vertex becomes straightforward.
Constraints generally fall into two categories: unilateral (𝐶 (x) ≤ 0)
or bilateral (𝐶 (x) = 0). With bilateral constraints, if a vertex po-
sition is directly set to a specific value, we simply skip updating
its position. Otherwise, it is constrained to a (usually linear) sub-
space. Our approach involves representing the constrained vertex
position using the subspace basis. This transforms both the ver-
tex position and gradient into an 𝐿-dimensional vector, where 𝐿
is the subspace dimension. Consequently, handling local steps for
constrained vertices involves solving an 𝐿 × 𝐿 system. Regarding
unilateral constraints, we allow compromises and define potential
energy to be solved alongside other potentials. This method handles
world box constraints in our simulations.

3.5 Collisions
Collisions can be handled by simply introducing a quadratic collision
energy per vertex, based on the penetration depth 𝑑 , such that

𝐸𝑐 (x) =
1
2
𝑘𝑐 𝑑

2 with 𝑑 = max
(
0, (x𝑏 − x𝑎) · n̂

)
, (12)

where 𝑘𝑐 is the collision stiffness parameter, x𝑎 and x𝑏 are the two
contact points on either side of the collision, and n̂ is the contact
normal.
There are two collision types for triangle meshes (Figure 4):
• Edge-edge collisions use continuous collision detection (CCD).

x𝑎 and x𝑏 correspond to the intersection points on either
edge and the contact normal is the direction between them,
i.e. n̂ = n/∥n∥, where n = x𝑏 − x𝑎 .
• Vertex-triangle collisions are detected either by CCD or dis-
crete collision detection (DCD). In this case, x𝑎 is the colliding
vertex and x𝑏 is the corresponding point on either the colli-
sion point (for CCD) or the closest point (for DCD) on the
triangle [Chen et al. 2023]. n̂ is the surface normal at x𝑏 .

In our implementation, we perform a DCD at the beginning of the
time step using x𝑡 to identify vertices that have already penetrated,

and the rest of the collisions use CCD. We simplify the computa-
tion of the gradient and the Hessian of the collision energy by not
differentiating through n̂, i.e. assuming that n̂ is constant.

Performing collision detection at every iteration using CCD can
be expensive and can easily become the bottleneck. Therefore, in
our implementation, we perform CCD once every 𝑛col iterations.
While this has the risk of missing some collision events, they are
likely to be captured via DCD in the next time step. All detected
collisions remain as force elements until the next collision detection.
For vertex-triangle collisions detected with DCD, it is important to
recompute the closest point (x𝑏) before computing the gradient and
Hessian of 𝐸𝑐 .

3.6 Friction
To compute friction for collision 𝑐 , we must consider the relative
motion of the contact points defined as

𝛿x𝑐 =
(
x𝑎 − x𝑡𝑎

)
−
(
x𝑏 − x𝑡

𝑏

)
, (13)

where x𝑡𝑎 and x𝑡
𝑏
are the positions of x𝑎 and x𝑏 at the beginning of

the time step.
With this 𝛿x𝑐 , we can use the friction model of incremental po-

tential contact (IPC) [Li et al. 2020a]. First, we project 𝛿x𝑐 to the 2D
contact tangential space, using a transformation matrix T𝑐 ∈ R3×2,
to evaluate the tangential relative translation u𝑐 = T𝑇𝑐 𝛿x𝑐 , where
T𝑐 = [t̂ b̂] is formed by a tangent t̂ and binormal b̂ vectors orthog-
onal to n̂. The signed magnitude of the collision force applied on
vertex 𝑖 is 𝜆𝑐,𝑖 = 𝜕𝐸𝑐

𝜕x𝑖 · n̂. Note that the sign of 𝜆𝑐,𝑖 is different for
vertices on different sides of the collision. Let 𝜇𝑐 be the friction
coefficient. We can then calculate the friction force using

f𝑐,𝑖 = −𝜇𝑐 𝜆𝑐,𝑖
𝜕𝛿x𝑐
𝜕x𝑖

T𝑐 𝑓1 (∥u𝑐 ∥)
u𝑐
∥u𝑐 ∥

, where (14)

𝑓1 (𝑢) =
2

(
𝑢
𝜖𝑣ℎ

)
−
(

𝑢
𝜖𝑣ℎ

)2
, 𝑢 ∈ (0, ℎ𝜖𝑣)

1, 𝑢 ≥ ℎ𝜖𝑣

. (15)

Here, 𝑓1 serves as a smooth transition function between static and
dynamic friction. When the relative velocity exceeds a small thresh-
old 𝜖𝑣 , dynamic friction is applied. Conversely, if the relative velocity
is below this threshold, static friction is applied, scaling between
the range of [0, 1].
In our formulation, we need the Hessian of the friction term,

which is the derivative of this function. We approximate the deriva-
tive by not differentiating through ∥u𝑐 ∥ for a more stable friction
force formulation [Macklin et al. 2020], such that

𝜕f𝑐,𝑖
𝜕x𝑖
≈ −𝜇𝑐 𝜆𝑐,𝑖

𝜕𝛿x𝑐
𝜕x𝑖

T𝑐
𝑓1 (∥u𝑐 ∥)
∥u𝑐 ∥

T𝑇𝑐

(
𝜕𝛿x𝑐
𝜕x𝑖

)𝑇
. (16)

Without this approximation, PSD projection and line search might
be needed to ensure stability. Finally, all friction forces f𝑐,𝑖 and their
derivatives 𝜕f𝑐,𝑖/𝜕x𝑖 are added to f𝑖 and H𝑖 , respectively.

3.7 Initialization
Since our method is an iterative solver, we begin with an initial
guess for x. The closer this initial guess is to the resulting x𝑡+1, the
fewer number of iterations we would need to converge. Typically,
if the simulation converges, different initializations should not sig-

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

116:6 • Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel

(a) Previous
position

(b) Inertia (c) Inertia &
acceleration

(d) Adaptive (e) Reference

Fig. 5. Different initialization options for a swinging elastic pendulum
dropped from the same height (blue line) simulated with our method
using only 20 iterations per frame, showing the same frame of the
simulation. Notice that initializing using (a) previous position and
(b) inertia fail to properly move under gravity, while (c) inertia and
acceleration leads to accessive stretching (red line) when VBD does not
run to convergence. (d) Our adaptive solution closely matches (e) the
reference generated by fully converged Newton’s method (green line).

nificantly affect the final results, although they may influence the
number of iterations required to achieve convergence.

Providing a good initial guess (one that is close to x𝑡+1) is particu-
larly important for applications with a limited computation budget,
e.g. using a fixed number of iterations. In such applications, the
initial guess can strongly impact the remaining residual at the end
of the final iteration.

We begin with considering three simple options for initialization:

(a) Previous position: x = x𝑡

(b) Inertia: x = x𝑡 + ℎv𝑡

(c) Inertia and acceleration: x = x𝑡 + ℎv𝑡 + ℎ2aext = y

Option (a) struggles with substantially stiff materials. As we
adjust each vertex separately, assuming the others remain fixed,
our method must lean on the inertia potential’s gradient (i.e.
𝑚𝑖 (x𝑖 − y𝑖)/2ℎ2) to march toward the local minimum. With stiff
materials, this method results in notably slower convergence
rates due to the inertia potential being considerably less stiff.
Consequently, it encounters challenges in simulating scenarios that
resemble free fall, like a swinging elastic pendulum at its maximum
height, as shown in Figure 5a.

Option (b) allows the system to start with the inertia of the previ-
ous step, which helps, but terminating the iterations prior to con-
vergence can again result in local material stiffness overpowering
external acceleration, as shown in Figure 5b.

Option (c) is similar to the initialization of position-based dynam-
ics, and performs notably better as it effectively preserves inertia
and properly reacts to external acceleration. However, with a limited
number of iterations, materials behave softer than they should, often
resulting in overstretching or collapsing under gravity. An example
of this can be seen in Figure 5c, where the pendulum extends more
than it should. Most notably, it struggles with steady objects at rest
in contact, consistently initializing them into a penetrating state, as
if they are in free fall. In such cases, the contact forces must entirely
undo the position change of initialization during the iterations. This
not only creates unnecessary computation, but also places consider-

1.0
0.8
0.6
0.4
0.2
0.0

gravity initialization factor (�̃�)

Fig. 6. The ratio of gravity 𝑎 used with adaptive initialization during
the swinging of an elastic pendulum. The model is a single-piece tetra-
hedral mesh. It automatically distinguishes vertices in approximate
free-fall (red) and those where elasticity counteracts gravity (blue).

able strain on the accuracy of the collision detection and handling
methods (including friction). Therefore, properly simulating objects
that are stacked on top of each other becomes a major challenge
with this initialization option.

We propose an adaptive initialization scheme that combines op-
tions (b) and (c), taking advantage of the freedom that VBD provides
in the choice of initialization. This scheme uses

(d) Adaptive: x = x𝑡 + ℎv𝑡 + ℎ2ã

replacing the external acceleration aext in (c) with an estimated ac-
celeration term ã, determined by exploiting the typical similarity be-
tween two consecutive time steps. We begin with the acceleration of
the previous frame a𝑡 = (v𝑡 − v𝑡−1)/ℎ and compute its component
𝑎𝑡ext along the external acceleration direction âext = aext/∥aext∥,
such that 𝑎𝑡ext = a𝑡 · âext. Then, we simply make sure that the esti-
mated acceleration does not exceed the external acceleration, using

ã = 𝑎 aext , where 𝑎 =

1 , if 𝑎𝑡ext > ∥aext∥
0 , if 𝑎𝑡ext < 0
𝑎𝑡ext/∥aext∥ , otherwise.

(17)

This adaptive approach includes external acceleration in the ini-
tialization when the motion of a vertex resembles free fall. When
an object is stationary, however, as in rest-in-contact, it maintains
the previous position in the initialization, preventing undesired
penetrations before the first iteration. It also successfully avoids
excessive stretching, as can be seen in Figure 5d. Visualizations of
different 𝑎 values in this simulation are shown in Figure 6. In short,
our adaptive initialization is a simple but effective strategy and it
is possible because VBD does not dictate a particular initialization
(unlike XPBD, for example).

3.8 Accelerated Iterations
We use the Chebyshev semi-iterative approach [Wang 2015] to
improve the convergence of our method, though other momentum-
based acceleration techniques, such as the Nesterov’smethod [Golub
and Van Loan 2013] can be applied as well. The Chebyshev method
iteratively computes an acceleration ratio based on the approxima-
tion of the system’s spectral radius. Instead of directly using the
output vertex positions of Gauss-Seidel x̄(𝑛) after iteration 𝑛, it
recomputes the positions at the end of the iteration using

x(𝑛) = 𝜔𝑛 (x̄(𝑛) − x(𝑛−2)) + x(𝑛−2) , (18)

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

Vertex Block Descent • 116:7

(a) Not accelerated (b) Accelerated (c) Reference

Fig. 7. Demonstrating the accelerator’s impact in a collision-intensive
scene: a squishy ball (230K vertices, 700K tetrahedra) dropping and
bouncing. Both (a) and (b) use ℎ = 1/120 seconds with a constant
number of 120 iterations per time step, taking 0.11 seconds of average
computation time per frame. (a)Without acceleration 120 iterations
appear to be insufficient. (b) Our acceleration scheme (𝜌 = 0.95), skip-
ping colliding vertices, manages to resolve complex collisions, notably
enhancing elasticity convergence for much stiffer outcomes, closely
matching (c) the reference computed using 2000 iterations.

where 𝜔𝑛 is the acceleration ratio that changes at each iteration as

𝜔𝑛 =
4

4 − 𝜌2𝜔𝑛−1
with 𝜔1 = 1 and 𝜔2 =

2
2 − 𝜌2

, (19)

where 𝜌 ∈ (0, 1) is the estimated spectral radius, which can be set
manually, or automatically tuned using the technique introduced
in [Wang and Yang 2016]. Note that this position recomputation
procedure is performed globally after each Gauss-Seidel iteration is
completed, not after each local solver step.
This accelerator was originally developed for solving linear sys-

tems, assuming the energy to be smooth and (nearly) quadratic.
Elastic energy generally fulfills these criteria. However, collision
energy tends to be discontinuous and highly stiff, making the use
of an accelerator in collision-intensive scenes prone to overshot
and compromise the system’s stability. To address this, we propose
a simple yet highly effective solution for accelerating scenes with
collisions: skipping the accelerations for actively colliding vertices.
Note that the accelerationmust be a continuous process. If a vertex is
detected colliding at a certain iteration, we will skip the acceleration
for it in all the following iterations in the same step, regardless of
whether the collision has been resolved. This approach has minimal
impact on the convergence of elasticity, since typically only a small
fraction of vertices are in collision. Also, for those colliding vertices,
the elasticity is usually overpowered by the collision forces. Thus,
this solution maintains the stability of the system, while effectively
accelerating the convergence of elasticity, as shown in Figure 7.

3.9 Parallelization
Gauss-Seidel-type iterative methods are often parallelized using
graph coloring by determining groups (i.e. colors) that can be han-
dled in parallel without impacting the sequential nature of the Gauss-
Seidel loop. Obviously, the same can be applied to VBD by simply
coloring vertices such that no force element uses multiple vertices
of the same color.
The advantage of VBD here is that, because it colors vertices, it

typically results in much fewer colors as compared to techniques
that color constraints/force elements, such as PBD. This is because
coloring these elements is equivalent to coloring the nodes of the

(a) Vertex colors: 3 (b) Dual graph & element colors: 8

(c) Vertex colors: 8 (d) Element colors: 76

Fig. 8. Coloring vertices vs. elements: (a) vertex coloring needs 3 colors
for 10 vertices while (b) element coloring (i.e. coloring the vertices of
the dual graph) needs 8 colors for 10 triangles in this example. The
difference is more pronounced for tet-meshes: (c) our vertex coloring
uses only 8 colors for 3,891 vertices while (d) our element coloring
implementation needs 76 colors for 14,802 tetrahedra in this example.

dual graph, which not only has more nodes, but, more importantly,
also has a lot more connections per vertex in general. Examples of
this are shown in Figure 8. Since different colors must be handled
sequentially, fewer colors means better parallelism.

When all force elements are known ahead of the simulation, graph
coloring can be performed as a preprocess. However, dynamically
generated constraints/force elements, such as ones due to collisions,
cannot be known ahead of time, requiring dynamic recoloring.
In our implementation for elastic body dynamics, we avoid the

cost of recoloring by precomputing coloring only for material forces,
ignoring dynamically generated force elements due to collisions.
This means that these collision forces may use multiple vertices of
the same color. Therefore, we cannot simply run a parallel loop over
all vertices of the same color and update them, because handling a
vertex with a dynamically generated force elementmay run into race
conditions (with partially updated vertex positions) when accessing
other vertices of the same color.
We resolve this by having an auxiliary vertex position buffer

(xnew) that stores the updated vertex position. When executing each
local VBD position update, we write the updated vertex positions
to the auxiliary buffer, instead of directly overwriting the original
vertex position buffer. Then, we copy the updated positions from the
auxiliary buffer to the original vertex position buffer after each color
pass. This prevents the race conditions that arise from simultaneous
read and write operations on vertex positions.
With this process, dynamically generated force elements using

multiple vertices of the same color result in (partially) Jacobi-style
iterations for those vertices, because they rely on the positions from
the previous iteration of those vertices. For vertices with differ-
ent colors, it is equivalent to Gauss-Seidel iterations, considering
the updated positions of the vertices with different colors. Note

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

116:8 • Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel

(a) No recoloring (ours) (b) Recoloring

Fig. 9. Handling collisions using (a) our scheme without recoloring
and (b) recoloring to achieve perfect Gauss-Seidel iterations, both
simulated using friction forces and accelerated iterations with 𝜌 = 0.95.
Notice that the results are highly similar, though not identical.

that our algorithm does not explicitly switch between Jacobi and
Gauss-Seidel iterations, but the resulting iteration we describe above
corresponds to either (partially) Jacobi or Gauss-seidel, depending
on the colors of the colliding vertices.
One might expect this solution to negatively impact the conver-

gence of VBD. Fortunately, however, such Jacobi-style information
exchanges are relatively rare. This is because, as shown in Figure 4,
with vertex-face collisions at most one pair and with edge-edge col-
lisions at most two pairs of vertices can have the same color. Also,
vertices with the same colors must be located on different sides of
the collision; therefore, their elastic energies are usually decoupled.
This ensures that the majority of the information exchange follows
the Gauss-Seidel order and thereby the impact of our solution on
convergence is minimal. Figure 9 presents an example with a large
number of collisions, comparing our solution of skipping recoloring
to proper Gauss-Seidel iterations with recoloring, showing that the
differences are minor.

Our solution also works with other types of topological changes,
such as tearing and fracturing. Deleting force elements does not
require any changes to vertex coloring. When an object is split by
duplicating vertices, as in the case of tearing a piece of cloth along
some edges (see Figure 10), duplicated vertices can safely inherit
the colors of their original vertices.

4 GPU IMPLEMENTATION
In this section, we describe a GPU implementation specifically de-
signed to leverage the inherent parallelization mechanism of mod-
ern GPUs, which consists of two hierarchical levels: block-level
and thread-level parallelism. Block-level parallelism facilitates large-
scale parallel operations, assuming that each block operates inde-
pendently. On the other hand, thread-level parallelism provides
finer, single-instruction-multiple-thread (SIMT) style parallelism, al-
lowing for inter-thread communication and synchronization within
the same block.

Reflecting on VBD, we observed that it naturally aligns with this
hierarchical architecture. We have thousands of vertices within a
single color category that operate independently, and each vertex
is associated with multiple force elements, which can be processed

Fig. 10. Tearing a piece of cloth with 2500 vertices and 4800 triangles.

concurrently. Algorithm 1 shows the pseudocode of our implemen-
tation. It uses block-level parallelism for processing each vertex.
The threads within each block are used for computing the forces
and Hessians, storing them in local shared memory, and computing
the sums via reduction. We use a fixed number of threads for each
block. When the total number of adjacent force elements exceeds
the number of threads for each block, individual threads will loop
over their assigned elements. During this process, they calculate the
forces and Hessians for these force elements and then sum them to
their assigned shared memory.
In our experiments, we observed nearly an order of magnitude

performance improvement, as compared to processing each vertex
with a single thread. The primary advantage lies in the optimiza-
tion of the memory access pattern, a common bottleneck in GPU
programs. This implementation reduces memory divergence within
blocks. Because the neighboring force elements of a vertex often
share multiple vertices, the threads within the same block can share
a global memory access to those shared vertices. Furthermore, this
strategy improved the parallelism of the algorithm by allowing par-
allel evaluation of the force and Hessian of adjacent force elements,
which are then written to the significantly faster shared memory.
This bypasses the slower global memory and enables the paral-
lel aggregation of force and Hessian values, enhancing the overall
efficiency of the process.

5 RESULTS
We evaluate our method with elastic body dynamics qualitatively
with various tests and quantitatively with comparisons to alterna-
tive methods. We use Neo-Hookean [Smith et al. 2018] materials
(without the logarithmic term) for our volumetric objects, StVK
[Volino et al. 2009] for clothes, and linear springs for elastic rods.
We use a fixed frame time of 1/60 seconds and a fixed iteration

count 𝑛max, instead of estimating convergence after every iteration.
Each frame is computed using 𝑆 substeps, such that ℎ = 1/(60𝑆)
seconds. Using smaller time steps increases accuracy and reduces
numerical damping with any implicit Euler method. With VBD, a
smaller time step only requires fewer iterations per step for similar
visual quality, but it can also achieve a smaller residual with the
same number of total iterations per frame (i.e., 𝑆𝑛max). The number
of threads per block is set to 16 for all the experiments.

We use no line search in our tests, as none of our tests required it
for stability, and running line search can result in a noticeable drop
in performance. In our experiments, we apply CCD only in the first
iteration (i.e. 𝑛col = 𝑛max), unless otherwise specified.

In our implementation, we handle collisions on the CPU using In-
tel’s Embree library [Wald et al. 2014]. The two phases with parallel
loops are implemented on the GPU using CUDA. All timing results
are generated on a computer with an AMD Ryzen 5950X CPU, 64GB

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

Vertex Block Descent • 116:9

Fig. 11. Simulation of 216 squishy balls with tentacles, a total of 48 million vertices and 151 million tetrahedra, dropped into a Utah teapot,
forming a stable pile with active frictional contacts. The average and maximum computation time per time step is 3.6 and 3.9 seconds, respectively,
using 𝑆 = 4 substeps per frame and 𝑛max = 40 iterations per step. The final frame of this simulation is shown in Figure 1.

↑ This platform
will be removed.

Fig. 12. Simulation of 10,368 deformable objects, totaling over 36 million vertices and 124 million tetrahedra, dropped onto a platform inside a box
container. Then, the platform is suddenly removed and the objects collectively fall onto the ground, forming stable piles both before and after the
platform is removed. The average and maximum computation times per time step are 4.2 and 4.7 seconds, respectively, using 𝑆 = 2 substeps and
𝑛max = 60 iterations per step. The final frame of this simulation is shown in Figure 1.

DDR3 RAM, and an NVIDIA RTX 4090 GPU. The runtime statistics
and parameters of all our experiments can be found in Table 1.

5.1 Large-Scale Tests
In Figure 1 we present two large-scale test, showcasing our method’s
performance, scalability, and stability in scenarios involving a large
number of complex collisions, including stacking and rest in contact.
The first one has 216 squishy balls with tentacles, totaling 48

million vertices and 151 million tetrahedra acting as force elements,
dropped into a Utah teapot. Intermediate frames of this simulation
are shown in Figure 11.
The second one includes more than 10 thousand deformable ob-

jects, totaling over 36 million vertices and 124 million tetrahedra,
dropped into a box and piled on a platform, which is then suddenly
removed, making the pile collectively fall onto the ground. The
intermediate frames are shown in Figure 12.
As can be seen in our supplemental video, both of these simu-

lations exhibit stable motion, quickly forming static piles, while
maintaining rest-in-contact behavior with over 1 million active
collisions. VBD’s parallelism and fast convergence resulted in an
average computation time of 40 and 25 seconds per frame in these
simulations, respectively.

Fig. 13. Visual convergence with different numbers of iterations per
frame for different material stiffness (with accelerated iterations using
𝜌 = 0.75, 0.86, 0.93 top to bottom), simulating a beamwith 463 vertices
and 1.5 thousand tetrahedra.

5.2 Unit Tests
The convergence rate of VBD depends on the stiffness of the sim-
ulated system. This is demonstrated in Figure 13, comparing VBD
with different numbers of iterations per frame to the converged
solution computed using Newton’s method. As expected, VBD con-

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

116:10 • Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel

Algorithm 1: VBD simulation for one time step.
Input: x𝑡 : the positions of the previous step; v𝑡 : the

velocities of the previous step; aext: the external
acceleration

Output: This step’s position x𝑡+1 and velocity v𝑡+1.
1 y← x𝑡 + ℎv𝑡 + ℎ2aext
2 Initial DCD using x𝑡

3 x← initial guess with adaptive initialization
4 for each iteration 𝑛 ≤ 𝑛max do
5 if 𝑛 mod 𝑛col = 1 then CCD using x
6 for each color 𝑐 do

// Block-level parallelization
7 parallel for each vertex 𝑖 in color 𝑐 do

// Thread-level parallelization
8 parallel for each 𝑗 ∈ F𝑖 do

// Variables in shared memory

9 f𝑖, 𝑗 = −
𝜕𝐸 𝑗

𝜕x𝑖

10 H𝑖, 𝑗 =
𝜕2𝐸 𝑗

𝜕x𝑖𝜕x𝑖
11 end

// Local reduction sums
12 f𝑖 =

∑
𝑗∈F𝑖 f𝑖, 𝑗

13 H𝑖 =
∑

𝑗∈F𝑖 H𝑖, 𝑗

14 Δx𝑖 ← H−1
𝑖

f𝑖
15 Δx𝑖 ← optional line search from x𝑖 + Δx𝑖 to x𝑖
16 xnew

𝑖
← x𝑖 + Δx𝑖

17 end
// Copy updated positions back to the vertex buffer

18 parallel for each vertex 𝑖 in color 𝑐 do
19 x𝑖 = xnew

𝑖

20 end
21 end

// Optional: accelerated iteration
22 parallel for each vertex 𝑖 do
23 Update x𝑖 using Equation 18.
24 end
25 end
26 v = (x − x𝑡)/ℎ
27 return x, v

verges slower for stiffer materials, which is common for descent-
based solvers. In this example, 15 iterations are more than sufficient
for the softest material, while stiffer ones require more. As can be
seen in our supplemental video, even though VBD can qualitatively
imitate the behavior of stiff materials with a relatively small number
of iterations, the motion can quickly diverge from the converged
solution, due to the remaining residual, unless a sufficient number
of iterations are used.
We present our tests with different friction coefficients 𝜇𝑐 for

friction forces in Figure 14. Notice that, 𝜇𝑐 impacts the motion, as
expected, and with sufficiently high 𝜇𝑐 , we can properly preserve
the position on an incline and form taller piles.

𝜇𝑐 = 0.0 𝜇𝑐 = 0.3 𝜇𝑐 = 0.6 𝜇𝑐 = 0.9

𝜇𝑐 = 0.0 𝜇𝑐 = 0.2 𝜇𝑐 = 0.4 𝜇𝑐 = 0.6

Fig. 14. Testing different friction coefficients 𝜇𝑐 for (top) an elastic
cube with 400 vertices and 1.45 thousand tetrahedra, initially resting
on an incline, and (bottom) 4 elastic octopus models, totaling 15.6
thousand vertices and 60 thousand tetrahedra, dropped into a box.

In our supplemental video, we also include a comparison of differ-
ent damping stiffness 𝑘𝑑 , showing that, despite numerical damping
of implicit Euler, without damping we can preserve kinetic energy
for a long time. As we increase 𝑘𝑑 , the motion subsides quicker, as
expected.

5.3 Stress Tests
We present a challenging frictional contact case in Figure 2, twisting
two thin beams together. This example includes extreme deforma-
tions, generating strong material forces that compete with self-
collisions and collisions between the two beams. It is simulated with
collision detection occurring once every 5 iterations (i.e. 𝑛col = 5).
Notice that VBD can properly handle such strong deformations with
frictional contact.
We show two simulations in Figure 3 for stress-testing the sta-

bility of VBD under extreme deformations. The first one shows an
armadillo model that is perfectly flattened and the second one is a
Utah teapot model with all vertices randomly scrambled and placed
on the surface of a sphere. Even though the simulations begin with
these extremely unstable energy configurations, VBD quickly re-
covers these models without performing a line search and using 100
iterations per frame.

Another stress test is shown in Figure 15. In this case, 10 vertices
of a Stanford bunny model are first slowly pulled away, generating a
state with considerable potential energy, and then suddenly released
(right after Figure 15b), causing severe deformations. Once again,
VBD successfully handles this challenging simulation case, involving
self-collisions with high-velocity impacts, using only 𝑛max = 10
iterations per step and 𝑆 = 5 per frame. Figure 16 presents a stability
test under large residuals by using only a single iteration per frame
(i.e. 𝑆 = 1 and 𝑛max = 1). Notice that our method produces stable
deformations with extreme stretching, even though the simulation

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

Vertex Block Descent • 116:11

(a) (b) (c)

(d) (e) (f)

Fig. 15. A stress test with extreme stretching: a Stanford bunny model
with 1.8 thousand vertices and 5.9 thousand tetrahedra is stretched by
slowly pulling 10 vertices away, which are then suddenly released. The
model recovers its shape after going through considerable deformations
and high-velocity motion, simulated with self-collisions and using
𝑆 = 5 substeps and 𝑛max = 10 iterations per step.

Fig. 16. A stress test using only a single iteration per frame (i.e. a time
step of ℎ = 1/60 seconds and 𝑛max = 1). One vertex on the armadillo
model’s nose is pulled while the finger and toe vertices are fixed. The
model has 15 thousand vertices and 50 thousand tetrahedra.

lacks a sufficient iteration count to properly reduce the residual at
each frame.

5.4 Convergence Rate
To evaluate the convergence rate of VBD, we present a simple test
shown in Figure 17, where an armadillo model that was previously
stretched is suddenly released. Here, we calculate the relative loss
after each iteration and compare it to alternative solvers.
The first alternative is preconditioned gradient descent (GD)

[Wang and Yang 2016] implemented on GPU within the same frame-
work as ours. GD requires a form of line search for stability, which
is implemented as testing the variational energy after every 8 it-
erations and, when needed, reducing the optimization step size
and backtracking (following the implementation of Wang and Yang
[2016]). We also include a version of GD that is accelerated us-
ing the Chebyshev semi-iterative approach [Wang 2015], as our
method. The iterations of GD are about 30% faster than ours with-
out line search. However, it necessitates line search for stability.
This makes it about 10% slower than our VBD, which does not
need line search. Furthermore, its convergence rate per iteration is
considerably slower, as it corresponds to Jacobi iterations. In this
example, when combined with acceleration, GD performs similar to

our method without acceleration but lags significantly behind our
method with acceleration.

We also compare to a version of our method that uses Jacobi iter-
ations, called Block Jacobi, implemented by computing the position
change for all vertices in parallel and then applying the position
update simultaneously to all vertices at the end of each iteration.
We incorporate the same line search scheme as GD for Block Jacobi,
as it is necessary for stability. Block Jacobi outperforms GD, as it
uses vertex blocks for computation, which corresponds to using
a diagonal Hessian block as a precondition, as opposed to just a
diagonal line that GD uses. Without line search, it achieves 20%
faster iteration times than our VBD, due to its perfect vertex-level
parallelization (without any coloring). However, combined with line
search, its iterations are about 17% slower than VBD. More impor-
tantly, because it uses Jacobi iterations, its convergence is hindered,
as compared to our Gauss-Seidel iterations.

Furthermore, we compare the convergence of our method to two
implementations of Newton’s method: first using a direct Cholesky
(LDLT) factorization solver provided by Intel’s MKL library [Wang
et al. 2014] running on the CPU, and the second using a GPU-
based conjugate gradient (CG) method. To ensure convergence, we
do a PSD projection for each tet’s Hessian of elasticity. Newton’s
method uses a line search for each iteration. Since its iterations
are slow, the computational overhead of line search is negligible.
Though the convergence of Newton’s method per iteration is far
superior to all others, because of its expensive computation time
per iteration, in these examples it lags far behind. Nonetheless,
for relatively tame experiments with less stretching and motion,
and especially for highly stiff and high-resolution simulations that
are much more expensive to simulate, we would expect Newton’s
method to eventually overtake all alternatives beyond a certain level
of convergence.
Finally, we compare our method to a quasi-Newton approach

using Laplacian preconditioning [Liu et al. 2017]. We utilize a GPU-
based conjugate gradient solver, similar to the one employed in
our GPU-CG Newton’s method’s implementation. Laplacian pre-
conditioning accelerates each linear solve, as it eliminates the need
for PSD projection and involves solving a smaller system. Practi-
cally, this method demonstrates faster convergence than Newton’s
method, particularly in the initial stages of the optimization pro-
cess. Nevertheless, it still lags behind both the accelerated and non-
accelerated versions of our VBD. A part of the performance advan-
tages of our VBD method presented above is related to its efficiency
in parallel execution on the GPU. To demonstrate its convergence in
the absence of parallel computation, we include a comparison using
single-threaded CPU implementations of our VBD and Newton’s
method with Cholesky factorization and CG. Figure 18 shows the
convergence results for the same experiment in the bottom row of
Figure 17. In these tests, our method initially demonstrates faster
convergence than both versions of Newton’s method. Over time,
the CG-based Newton’s method catches up to our VBD without
Chebyshev acceleration. However, VBD with Chebyshev accelera-
tion maintains a significant performance lead over the others. This
experiment shows that the performance advantages of our method
are not only due to its GPU parallelism.

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

116:12 • Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel

0 50 100 150 200 250 300 350
Iterations

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Lo
ss

0 2 4 6 8 10 12 14 16
Computational Time (ms)

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Lo
ss

VBD
VBD (accelerated)
GD
GD (accelerated)
Block Jacobi
Block Jacobi (accelerated)
Newton (CPU Cholesky)
Newton (GPU CG)
Quasi-Newton (GPU CG)

0 200 400 600 800 1000
Iterations

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Lo
ss

0 5 10 15 20 25 30 35 40
Computational Time (ms)

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Lo
ss

VBD
VBD (accelerated)
GD
GD (accelerated)
Block Jacobi
Block Jacobi (accelerated)
Newton (CPU Cholesky)
Newton (GPU CG)
Quasi-Newton (GPU CG)

Fig. 17. Convergence of different descent methods for simulating an armadillo model with 15 thousand vertices and 50 thousand tetrahedra with
(top) a relatively soft material and (bottom) a 10× stiffer material. Vertices near the top inside the glass block are fixed and the models are initially
stretched, as shown on the left, by pulling down foot vertices. Then, the position constraints on foot vertices are suddenly removed, allowing the
model to deform for 33 ms. The deformation is computed using a single time step of ℎ = 33 ms. The graphs show relative loss over iterations and
computation time. All methods are implemented on the GPU using the same framework with single precision (32-bit) floating-point numbers,
except for Newton’s method with Cholesky factorization, which runs on the CPU using double precision (64-bit). Accelerated versions use 𝜌 = 0.95.

Table 1. Performance results and simulation parameters.

Experiment Name Number of Material Contact &Friction Simulation Parameters Time per step
Vert. Tet. Color Type Stiffness Damping 𝑘𝑐 𝜇𝑐 , 𝜖𝑣 ℎ(sec.) Iterations avg./max

Twisting Thin Beams (Figure 2) 97K 266K 8 NeoHookean 𝜇 = 5𝑒4, 𝜆 = 1𝑒6 1e-6 1e6 0.1, 1e-2 1/300 100 60/78ms
Flattening initialization (Figure 3) 15K 50K 8 NeoHookean 𝜇 = 2𝑒6, 𝜆 = 1𝑒7 1e-6 NA NA 1/60 100 3.3/3.8ms
Random initialization (Figure 3) 2K 8.5K 8 NeoHookean 𝜇 = 2𝑒6, 𝜆 = 1𝑒7 1e-6 NA NA 1/60 100 2.6/2.8ms
Tetmesh Pendulum (Figure 6) 304 755 6 NeoHookean 𝜇 = 1𝑒7, 𝜆 = 1𝑒8 0 NA NA 1/300 20 <0.1ms
Squishy Ball Drops (Figure.7,9,19) 230K 700K 8 NeoHookean 𝜇 = 2𝑒6, 𝜆 = 2𝑒7 1e-7 1e7 0.1, 1e-2 1/120 120 15/17ms
Tearing Cloth (Figure 10) 2500 4800 3 StVK 𝜇 = 1𝑒4, 𝜆 = 1𝑒4 1e-5 NA NA 1/300 20 11.2/11.5 ms(cpu)
Dropping 216 Squshy Balls (Figure 11) 48M 151M 9 NeoHookean 𝜇 = 2𝑒6, 𝜆 = 2𝑒7 1e-7 1e7 0.1, 1e-2 1/240 40 3.6/3.9s
Dropping 10368 Models (Figure 12) 36M 124M 8 NeoHookean 𝜇 = 1𝑒6, 𝜆 = 1𝑒7 1e-7 1e7 0.1, 1e-2 1/120 60 4.2/4.7s
Beam Sagging (Figure 13) 463 1.5K 6 NeoHookean 𝜇 = 1𝑒6/3𝑒6/1𝑒7 1e-6 NA NA 1/300 3/5/10 avg.: 0.08/0.12/0.24ms

𝜆 = 1𝑒7/3𝑒7/1𝑒8 NA max: 0.08/0.16/0.31ms
Cude Sliding (Figure 14) 800 2.9K 6 NeoHookean 𝜇 = 1𝑒6, 𝜆 = 1𝑒7 1e-6 1e7 0/0.3/0.6/0.9, 1e-2 1/300 10 0.10/0.17ms
Octopi Stacking (Figure 14) 15.6K 60K 8 NeoHookean 𝜇 = 1𝑒6, 𝜆 = 1𝑒7 1e-6 1e7 0/0.1/0.4/0.6, 1e-2 1/300 10 1.1/1.3ms
Extreme Stretch (Figure 16) 1.8K 5.9K 8 NeoHookean 𝜇 = 2𝑒6, 𝜆 = 1𝑒7 1e-6 1e7 0.2, 1e-2 1/300 10 0.36/1.02ms
2 Cube colliding (Figure 20) 800 2.9K 6 NeoHookean 𝜇 = 1𝑒6, 𝜆 = 1𝑒7 1e-6 1e7 0.3, 1e-2 1/300 10 0.16/0/20ms

5.5 Comparisons to XPBD
Our method has an entirely different formulation than XPBD, but
there are some strong similarities, as both methods operate with
position updates using Gauss-Seidel iterations. Here we provide two
direct comparisons to highlight some important differences.
XPBD replaces the Hessian matrix and uses only the Hessian of

inertia potential. This omission is justified by using a small time step,
because the significance of the inertia potential increases quadrat-
ically as the time step decreases. Nonetheless, with complex ex-

amples, the impact of this approximation can be severe, even with
small time step. This is demonstrated in Figure 19 with a challeng-
ing collision-rich scenario involving a squishy ball with tentacles
dropped to the ground. Comparing XPBD with 120 iterations per
step (Figure 19a) to our method with the same number of iterations
(Figure 19d), we can see that our method not only achieves a more
stable animation, it also performs faster because of its improved
parallelism, as compared to XPBD. Reducing the time step helps
XPBD even when using a similar total number of iterations per
frame (Figure 19b). However, simply reducing the time step is not

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

Vertex Block Descent • 116:13

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Computational Time (s)

10 4

10 3

10 2

10 1

100
Re

la
tiv

e
Lo

ss

VBD (CPU single threaded)
VBD (accelerated, CPU single threaded)
Newton (CPU Cholesky, single threaded)
Newton (CPU CG, single threaded)

Fig. 18. Comparing a single-threaded CPU implementation of our
method with single-threaded Newton’s method (using both CG and
Cholesky). The scene is identical to the bottom row of Figure 17 .

(a) XPBD
ℎ = 1/120 sec.
𝑛max = 120
𝑛col = 120

(0.32 sec./frame)

(b) XPBD
ℎ = 1/3000 sec.

𝑛max = 5
𝑛col = 125

(0.35 sec./frame)

(c) XPBD
ℎ = 1/3000 sec.

𝑛max = 5
𝑛col = 5

(3.1 sec./frame)

(d) VBD (ours)
ℎ = 1/120 sec.
𝑛max = 120
𝑛col = 120

(0.031 sec./frame)

Fig. 19. A squishy ball with tentacles, comprising 230 thousand ver-
tices and 700 thousand tetrahedra, dropped on the ground, simulated
using (a) XPBD with a large time step and 240 iterations per frame,
(b) XPBD with a 25× smaller time step and 250 total iterations per
frame, (c) XPBD with the same small time step and iteration count but
with 25× more frequent collision detection, and (d) VBD with a large
time step and 240 iterations per frame. Comparing (a) and (d), VBD is
faster than XPBD with the same settings. XPBD’s solution approaches
VBD as the time step decreases, but it also requires more frequent
collision detection to achieve a visually similar result to VBD.

sufficient in this case, as XPBD also needs more frequent collision
detection (Figure 19c). Using collision detection with the same fre-
quency as ours while taking small time step (Figure 19b) leads to
collisions that are detected too late and cause stability issues in this
case. This is not only because the collisions that are detected too
late are deeper, but also because smaller time step lead to higher
vertex velocities when resolving stiff collisions.

One of the fundamental challenges of XPBD is handling highmass
ratios. This is demonstrated with a simple example in Figure 20,
where a large and heavy elastic cube is dropped onto a smaller and
much lighter cube, with a mass ratio of 1:2000. In this example,
XPBD’s collision constraints, even with infinite stiffness, cannot

(a) Initial State (b) XPBD (c) VBD (ours)

Fig. 20. Dropping a large and heavy elastic cube onto a smaller and
much lighter box with a mass ratio of 1:2000. Each cube has 400 vertices
and 1.5 thousand tetrahedra.

overcome the mass ratio and the smaller cube is entirely crushed
upon contact. This is because of the dual formulation of XPBD
[Macklin et al. 2020]. Our method, on the other hand, has no such
difficulties with handling high mass ratios.

6 VBD FOR OTHER SIMULATION SYSTEMS
We have described our method in Section 3 in the context of elastic
body dynamics. Yet, VBD is not limited to such simulations and can
be used to solve various optimization problems. Here, we consider
some other example simulation systems and briefly discuss how our
method can be applied. This is not intended as an exhaustive list
but merely as examples that could guide the reader to discern how
their specific simulation problem could utilize VBD.

6.1 Particle-Based Simulations
Particle-based simulations can easily use VBD by simply replacing
the vertices in our description above with particles. Since VBD needs
the Hessian of the force element energies, implementations would
require computing the derivatives of all forces acting on a particle
wrt. its position.

Parallelizing particle-based simulations also involves additional
considerations. Mass-spring type simulations, such as peridynam-
ics [Levine et al. 2015], can use our parallelization approach with
vertex coloring. However, simulations involving disjoint or loosely-
joined particles, such as particle-based fluid simulation [Müller et al.
2003; Peer et al. 2015; Takahashi et al. 2015], would not only require
recoloring at each time step but also using a conservative neighbor-
hood definition (including position change within a time step) for
coloring, since position updates can alter the set of particles that
interact with each particle. Figure 21 shows a simple example where
20 particles, including one that is 1000× heavier, are connected with
springs of two different stiffness, simulated using VBD.

6.2 Rigid Body Simulation
For handling rigid body simulations with VBD, we can replace
each vertex in our formulation with an entire rigid body, using
the variational formulation of rigid body dynamics [Ferguson et al.
2021]. Unlike a vertex that has only 3 DoF, a rigid body also has
rotational DoF, resulting in 6 DoF. Therefore, in our local system,
we must solve a larger problem, where x𝑖 ∈ R6 and H𝑖 ∈ R6×6,
including Hessians of all force elements wrt. all 6 DoF of x𝑖 . Note
that, in this case, these force elements are not internal material
forces, but external forces acting on the rigid body, due to collisions
or other constraints.

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

116:14 • Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel

stiff soft
springs springs

Fig. 21. 20 particles attached with springs, forming a swinging chain,
simulated using VBD with a 𝑆 = 1 substep and 100 iterations per
step. The particle on one end of the chain is fixed and the particle
on the other end has 1000× more mass than the others. (Left) using
sufficiently stiff springs, they expand no more than 0.7% of their rest
lengths, despite the substantial mass difference. (Right) using 100×
less stiff springs, the chain undergoes a visible expansion as it swings.

Fig. 22. 5 rigid bodies, each with 6 DoF, forming a chain through col-
lisions, simulated using our VBD formulation for rigid body dynamics.

Other than this additional complexity, we can follow the same
procedure with VBD. Parallelization with coloring depends on the
nature of the rigid body simulation. For example, pre-coloring, as
we used in our examples for elastic bodies might work for problems
like a rigid body chain. For disjoint rigid bodies interacting through
collisions only, dynamic recoloring might be needed.
Articulated rigid bodies can be handled by defining joint con-

straints with an elastic potential. Infinitely stiff constraints are also
possible, but VBD cannot guarantee that they will be satisfied using
a fixed number of iterations. Another alternative is hard constraints
can be introduced by reducing the total DoF in the system and re-
placing the vertices in our formulation with an articulated rigid
body, having more than 6 DoF. Obviously, this would lead to an
even larger local system, requiring modifications to the variational
formulation.
Example rigid body simulations are shown in Figure 22 and Fig-

ure 23, simulated using VBD, as described above.
Note that since our collision formulation is based on penetration

potential, it corresponds to penalty forces. We leave the exploration
of handling impulse-based collisions [Mirtich 1996] with VBD to
future work.

Fig. 23. Dropping 60 rigid bodies into a Utah teapot, showcasing
collisions and frictional contact. Remarkably, one rigid body stays on
the spout due to friction.

6.3 Unified Simulations
Unified simulation systems are useful for handling scenarios that
involve different material types. Typical unified simulation systems
use a fundamental building block, such as a particle, to represent all
supported materials [Becker et al. 2009; Macklin et al. 2014; Martin
et al. 2010; Müller et al. 2004; Solenthaler et al. 2007]. We can form
a unified simulation system using VBD without representing all
materials using the same building block. For any simulation system
described above, we can combine it with another, provided that
we can define the information exchange as an energy potential.
For example, when the interactions take place as collisions, we can
easily join rigid body simulations with elastic bodies or particles
via the collision potential. Joint constraints with elastic potential
would be another easy way to combine different simulation systems.
The advantage here is that a large rigid body, for example, can be
represented as a single object with just 6 DoF, as opposed to using
multiple building blocks that are constrained to move as a rigid con-
struction. This way, a heterogeneous collection of representations
can be joined within the same integrator using VBD.
On the other hand, this form of defining a unified simulation

system may be challenging for other types of information exchange,
such as evaluating buoyancy. Exploring such problems would be
another interesting direction for future research.

7 DISCUSSION
We derive our method as a block coordinate descent method for
variational time integrators, which offers optimization techniques
like PSD projection and line search. The fact that we do not require
those techniques to guarantee stability actually makes our method
a more general solver of nonlinear equations. When line search
is not used, our method can effectively manage non-conservative
forces, such as friction, the same as how it handles conservative
forces. In other words, our method allows for a seamless transition
between block coordinate descent and block Gauss-Sediel [Grippo
and Sciandrone 2000; Hageman and Porsching 1975]. While we do
not practically utilize these optimization techniques derived from
the descent view, they remain available options for users.

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

Vertex Block Descent • 116:15

(a) 100 iterations (b) Converged (c) 100 iterations (d) Converged

Fig. 24. A chain of particles connected with soft springs (orange) and
10,000× stiffer (blue) springs. Simulations with VBD using (a,c) 100
iterations per frame fail to converge and result in excessive extensions,
as compared to (b,d) converged results.

VBD is a descent-based method that operates through local iter-
ations. Therefore, it may not be a good solution for problems that
would benefit from a global treatment.

The speed of information travel with VBD depends on the connec-
tions of vertices and the number of iterations used. A perturbation
applied on a vertex can impact other vertices of a connected chain
through force elements at most as far as the number of colors within
a single iteration. Therefore, VBD is not ideal for high-resolution
stiff systems, as it may require too many iterations for a perturba-
tion of a vertex to travel across the system. In such cases, a global
solution using Newton’s method may prove to be more effective.

Our collision formulation for VBD is based on penetration poten-
tial. Therefore, it cannot guarantee penetration-free results. In fact,
penetrations are almost never completely resolved, as some amount
of penetration is needed to maintain some collision force. Explor-
ing penetration-free collisions with VBD would be an interesting
direction for future research.

In addition, defining a similar collision energy for codimensional
objects, particularly for self-collisions, can be a challenge.

VBD is a primal solver [Macklin et al. 2020], so it can easily handle
high mass ratios (see Figure 6, 20, and 21), but it struggles with high
stiffness ratios. This is shown in Figure 24 using a stiffness ratio of
1:10000, where VBD has poor convergence behavior.

8 CONCLUSION
We have presented vertex block descent, an efficient iterative
descent-based solution for optimization problems, and described
how it can be used for physics-based simulations with implicit Euler
integration defined through a variational formulation. We have
explained all essential details of elastic body dynamics using VBD,
including handling damping, constraints, collisions, and friction.
We have defined an adaptive initialization technique, enabled by
VBD’s formulation, and discussed how to use momentum-based
acceleration to improve convergence. We have also presented
effective methods for parallelization using VBD, considering
dynamically introduced/removed force elements, and explained
how its vertex-level computation improves the parallelization of its
Gauss-Seidel iterations.

Our results show that VBD can handle highly complex simulation
cases (Figure 1), it remains stable under extreme stress tests (Figure 2,
3, 15, and 16), and offers fast convergence (Figure 17).

In addition, we have summarized how VBD can be used for other
types of simulation problems, such as particle systems and rigid

bodies, including unified simulations. We have also mentioned some
related future research directions and discussed VBD’s limitations.

ACKNOWLEDGMENTS
We thank Miles Macklin and Theodore Kim for an inspiring discus-
sion on primal solvers, and Sheldon Andrews for helpful comments
and suggestions. This work was supported in part by NSF grant
1764071.

REFERENCES
Uri M Ascher and Eddy Boxerman. 2003. On the modified conjugate gradient method

in cloth simulation. The Visual Computer 19 (2003), 526–531.
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. (1998).
Markus Becker, Markus Ihmsen, and Matthias Teschner. 2009. Corotated SPH for

deformable solids. In Proceedings of the Fifth Eurographics Conference on Natural
Phenomena (Munich, Germany) (NPH’09). Eurographics Association, Goslar, DEU,
27–34.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. ACM transactions on graphics (TOG)
22, 3 (2003), 917–924.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2023.
Projective dynamics: Fusing constraint projections for fast simulation. In Seminal
Graphics Papers: Pushing the Boundaries, Volume 2. 787–797.

Robert Bridson, Ronald Fedkiw, and JohnAnderson. 2002. Robust treatment of collisions,
contact and friction for cloth animation. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques. 594–603.

Robert Bridson, Sebastian Marino, and Ronald Fedkiw. 2005. Simulation of clothing
with folds and wrinkles. In ACM SIGGRAPH 2005 Courses. 3–es.

Steve Capell, Seth Green, Brian Curless, TomDuchamp, and Zoran Popović. 2002. Amul-
tiresolution framework for dynamic deformations. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation. ACM, San Antonio
Texas, 41–47. https://doi.org/10.1145/545261.545268

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric
model for elastic deformations. ACM Transactions on Graphics 29, 4 (July 2010), 1–6.
https://doi.org/10.1145/1778765.1778775

He Chen, Elie Diaz, and Cem Yuksel. 2023. Shortest Path to Boundary for Self-
Intersecting Meshes. 42, 4, Article 146 (2023), 15 pages. https://doi.org/10.1145/
3592136

Kwang-Jin Choi and Hyeong-Seok Ko. 2005. Stable but responsive cloth. In ACM
SIGGRAPH 2005 Courses on - SIGGRAPH ’05. ACM Press, Los Angeles, California, 1.
https://doi.org/10.1145/1198555.1198571

B. Eberhardt, O. Etzmuß, and M. Hauth. 2000. Implicit-Explicit Schemes for Fast
Animation with Particle Systems. In Computer Animation and Simulation 2000,
W. Hansmann, W. Purgathofer, F. Sillion, Nadia Magnenat-Thalmann, Daniel
Thalmann, and Bruno Arnaldi (Eds.). Springer Vienna, Vienna, 137–151. https:
//doi.org/10.1007/978-3-7091-6344-3_11 Series Title: Eurographics.

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,
Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021.
Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SIGGRAPH)
40, 4, Article 183 (2021).

M. Fratarcangeli and F. Pellacini. 2015. Scalable Partitioning for Parallel Position
Based Dynamics. Computer Graphics Forum 34, 2 (May 2015), 405–413. https:
//doi.org/10.1111/cgf.12570

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: a practical
gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics
35, 6 (Nov. 2016), 1–9. https://doi.org/10.1145/2980179.2982437

Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M.
Teran. 2015. Optimization Integrator for Large Time Steps. IEEE Transactions on
Visualization and Computer Graphics 21, 10 (Oct. 2015), 1103–1115. https://doi.org/
10.1109/TVCG.2015.2459687

Gene H Golub and Charles F Van Loan. 2013. Matrix computations. JHU press.
Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A simple framework

for adaptive simulation. ACM transactions on graphics (TOG) 21, 3 (2002), 281–290.
L. Grippo and M. Sciandrone. 2000. On the convergence of the block nonlinear

Gauss–Seidel method under convex constraints. Operations Research Letters 26, 3
(2000), 127–136. https://doi.org/10.1016/S0167-6377(99)00074-7

LA Hageman and TA Porsching. 1975. Aspects of nonlinear block successive overrelax-
ation. SIAM J. Numer. Anal. 12, 3 (1975), 316–335.

Michael Hauth and Olaf Etzmuss. 2001. A High Performance Solver for the Animation
of Deformable Objects using Advanced Numerical Methods. Computer Graphics
Forum 20, 3 (Sept. 2001), 319–328. https://doi.org/10.1111/1467-8659.00524

Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. 2012. Updated
sparse cholesky factors for corotational elastodynamics. ACM Transactions on

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

https://doi.org/10.1145/545261.545268
https://doi.org/10.1145/1778765.1778775
https://doi.org/10.1145/3592136
https://doi.org/10.1145/3592136
https://doi.org/10.1145/1198555.1198571
https://doi.org/10.1007/978-3-7091-6344-3_11
https://doi.org/10.1007/978-3-7091-6344-3_11
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1145/2980179.2982437
https://doi.org/10.1109/TVCG.2015.2459687
https://doi.org/10.1109/TVCG.2015.2459687
https://doi.org/10.1016/S0167-6377(99)00074-7
https://doi.org/10.1111/1467-8659.00524

116:16 • Anka He Chen, Ziheng Liu, Yin Yang, and Cem Yuksel

Graphics 31, 5 (Aug. 2012), 1–13. https://doi.org/10.1145/2231816.2231821
G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs. 2001. An implicit finite element

method for elastic solids in contact. In Proceedings Computer Animation 2001. Four-
teenth Conference on Computer Animation (Cat. No.01TH8596). IEEE Comput. Soc,
Seoul, South Korea, 136–254. https://doi.org/10.1109/CA.2001.982387

Peter Huthwaite. 2014. Accelerated finite element elastodynamic simulations using the
GPU. J. Comput. Phys. 257 (2014), 687–707.

C. Kane, J. E. Marsden, and M. Ortiz. 1999. Symplectic-energy-momentum preserving
variational integrators. J. Math. Phys. 40, 7 (July 1999), 3353–3371. https://doi.org/
10.1063/1.532892

Couro Kane, Jerrold E Marsden, Michael Ortiz, and Matthew West. 2000. Variational
integrators and the Newmark algorithm for conservative and dissipative mechanical
systems. International Journal for numerical methods in engineering 49, 10 (2000),
1295–1325.

Liliya Kharevych, Weiwei Yang, Yiying Tong, Eva Kanso, Jerrold E. Marsden, Peter
Schröder, and Matthieu Desbrun. 2006. Geometric, Variational Integrators for Com-
puter Animation. In ACM SIGGRAPH / Eurographics Symposium on Computer Ani-
mation, Marie-Paule Cani and James O’Brien (Eds.). The Eurographics Association.
https://doi.org/10.2312/SCA/SCA06/043-051

Lei Lan, Minchen Li, Chenfanfu Jiang, HuaminWang, and Yin Yang. 2023. Second-order
Stencil Descent for Interior-point Hyperelasticity. ACM Transactions on Graphics
42, 4 (Aug. 2023), 1–16. https://doi.org/10.1145/3592104

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.
2022. Penetration-free projective dynamics on the GPU. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1–16.

J. A. Levine, A.W. Bargteil, C. Corsi, J. Tessendorf, and R. Geist. 2015. A peridynamic per-
spective on spring-mass fracture. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Copenhagen, Denmark) (SCA ’14). Eurographics
Association, Goslar, DEU, 47–55.

A. Lew, J. E. Marsden, M. Ortiz, and M.West. 2004. Variational time integrators. Internat.
J. Numer. Methods Engrg. 60, 1 (May 2004), 153–212. https://doi.org/10.1002/nme.958

Cheng Li, Min Tang, Ruofeng Tong, Ming Cai, Jieyi Zhao, and Dinesh Manocha. 2020b.
P-cloth: interactive complex cloth simulation on multi-GPU systems using dynamic
matrix assembly and pipelined implicit integrators. ACM Transactions on Graphics
(TOG) 39, 6 (2020), 1–15.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin,
Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020a. Incremental po-
tential contact: intersection-and inversion-free, large-deformation dynamics. ACM
Trans. Graph. 39, 4 (2020), 49.

Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M. Kaufman.
2019. Decomposed optimization time integrator for large-step elastodynamics. ACM
Transactions on Graphics 38, 4 (Aug. 2019), 1–10. https://doi.org/10.1145/3306346.
3322951

Xuan Li, Yu Fang, Lei Lan, Huamin Wang, Yin Yang, Minchen Li, and Chenfanfu Jiang.
2023. Subspace-Preconditioned GPU Projective Dynamics with Contact for Cloth
Simulation. In SIGGRAPH Asia 2023 Conference Papers. 1–12.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for
Real-Time Simulation of Hyperelastic Materials. ACM Transactions on Graphics 36,
3 (June 2017), 1–16. https://doi.org/10.1145/2990496

M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T.Y. Kim. 2020. Pri-
mal/Dual Descent Methods for Dynamics. Computer Graphics Forum 39, 8 (Dec.
2020), 89–100. https://doi.org/10.1111/cgf.14104

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified
particle physics for real-time applications. ACM Trans. Graph. 33, 4, Article 153 (jul
2014), 12 pages. https://doi.org/10.1145/2601097.2601152

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-
based simulation of compliant constrained dynamics. In Proceedings of the 9th
International Conference on Motion in Games. ACM, Burlingame California, 49–54.
https://doi.org/10.1145/2994258.2994272

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross.
2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29, 4,
Article 39 (jul 2010), 10 pages. https://doi.org/10.1145/1778765.1778776

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. In ACM SIGGRAPH 2011 papers. 1–8.

Brian Vincent Mirtich. 1996. Impulse-based dynamic simulation of rigid body systems.
Ph. D. Dissertation. AAI9723116.

Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid
simulation for interactive applications. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (San Diego, California)
(SCA ’03). Eurographics Association, Goslar, DEU, 154–159.

Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and Barbara Cut-
ler. 2002. Stable real-time deformations. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 49–54.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless deformations based on shape matching. ACM transactions on graphics
(TOG) 24, 3 (2005), 471–478.

M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based
animation of elastic, plastic and melting objects. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Grenoble, France)
(SCA ’04). Eurographics Association, Goslar, DEU, 141–151. https://doi.org/10.1145/
1028523.1028542

Alexander Naitsat, Yufeng Zhu, and Yehoshua Y Zeevi. 2020. Adaptive block coordinate
descent for distortion optimization. In Computer Graphics Forum, Vol. 39. Wiley
Online Library, 360–376.

Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit
viscosity formulation for SPH fluids. ACM Trans. Graph. 34, 4, Article 114 (jul 2015),
10 pages. https://doi.org/10.1145/2766925

Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: A
practitioner’s guide to theory, discretization and model reduction. ACM SIGGRAPH
2012 Courses, SIGGRAPH’12 (08 2012). https://doi.org/10.1145/2343483.2343501

J.C. Simo, N. Tarnow, and K.K. Wong. 1992. Exact energy-momentum conserving
algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in
Applied Mechanics and Engineering 100, 1 (Oct. 1992), 63–116. https://doi.org/10.
1016/0045-7825(92)90115-Z

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean
flesh simulation. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1–15.

Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. 2007. A unified particle model
for fluid–solid interactions: Research Articles. Comput. Animat. Virtual Worlds 18, 1
(feb 2007), 69–82.

Ari Stern and Eitan Grinspun. 2009. Implicit-Explicit Variational Integration of Highly
Oscillatory Problems. Multiscale Modeling & Simulation 7, 4 (Jan. 2009), 1779–1794.
https://doi.org/10.1137/080732936 arXiv:0808.2239 [math].

Tetsuya Takahashi, Yoshinori Dobashi, Issei Fujishiro, Tomoyuki Nishita, and Ming C.
Lin. 2015. Implicit Formulation for SPH-based Viscous Fluids. Comput. Graph.
Forum 34, 2 (may 2015), 493–502. https://doi.org/10.1111/cgf.12578

Rasmus Tamstorf, Toby Jones, and Steve McCormick. 2015. Smoothed Aggregation
Multigrid for Cloth Simulation. ACM Transactions on Graphics 34 (Oct. 2015), 1–13.
https://doi.org/10.1145/2816795.2818081

Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust
quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation. 181–190.

Quoc-Minh Ton-That, Paul G. Kry, and Sheldon Andrews. 2023. Parallel block Neo-
Hookean XPBD using graph clustering. Computers & Graphics 110 (Feb. 2023), 1–10.
https://doi.org/10.1016/j.cag.2022.10.009

P. Volino and N. Magnenat-Thalmann. 2001. Comparing efficiency of integration
methods for cloth simulation. In Proceedings. Computer Graphics International 2001.
IEEE Comput. Soc, Hong Kong, China, 265–272. https://doi.org/10.1109/CGI.2001.
934683

Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A simple approach
to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4,
Article 105 (sep 2009), 16 pages. https://doi.org/10.1145/1559755.1559762

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014.
Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 1–8.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, Yajuan
Wang, Endong Wang, Qing Zhang, Bo Shen, et al. 2014. Intel math kernel library.
High-Performance Computing on the Intel® Xeon Phi™: How to Fully Exploit MIC
Architectures (2014), 167–188.

Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Transactions on Graphics 34, 6 (Nov. 2015), 1–9.
https://doi.org/10.1145/2816795.2818063

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on
the GPU. ACM Transactions on Graphics 35, 6 (Nov. 2016), 1–10. https://doi.org/10.
1145/2980179.2980236

Xinlei Wang, Minchen Li, Yu Fang, Xinxin Zhang, Ming Gao, Min Tang, Danny M.
Kaufman, and Chenfanfu Jiang. 2020. Hierarchical Optimization Time Integration
for CFL-Rate MPM Stepping. ACM Transactions on Graphics 39, 3 (June 2020), 1–16.
https://doi.org/10.1145/3386760

Stephen J Wright. 2015. Coordinate descent algorithms. Mathematical programming
151, 1 (2015), 3–34.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid
method for real-time simulation of deformable objects. ACM Transactions on Graph-
ics 38, 6 (Dec. 2019), 1–13. https://doi.org/10.1145/3355089.3356486

Y.Chen, Y.Han, J.Chen, Z. Zhang, A. McAdams, and J.Teran. 2024. Position-Based Non-
linear Gauss-Seidel for Quasistatic Hyperelasticity. ACM Transactions on Graphics
(TOG) 115 (2024), 115:1–115:15.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient multi-
grid method for the simulation of high-resolution elastic solids. ACM Transactions
on Graphics 29, 2 (March 2010), 1–18. https://doi.org/10.1145/1731047.1731054

ACM Trans. Graph., Vol. 43, No. 4, Article 116. Publication date: July 2024.

https://doi.org/10.1145/2231816.2231821
https://doi.org/10.1109/CA.2001.982387
https://doi.org/10.1063/1.532892
https://doi.org/10.1063/1.532892
https://doi.org/10.2312/SCA/SCA06/043-051
https://doi.org/10.1145/3592104
https://doi.org/10.1002/nme.958
https://doi.org/10.1145/3306346.3322951
https://doi.org/10.1145/3306346.3322951
https://doi.org/10.1145/2990496
https://doi.org/10.1111/cgf.14104
https://doi.org/10.1145/2601097.2601152
https://doi.org/10.1145/2994258.2994272
https://doi.org/10.1145/1778765.1778776
https://doi.org/10.1145/1028523.1028542
https://doi.org/10.1145/1028523.1028542
https://doi.org/10.1145/2766925
https://doi.org/10.1145/2343483.2343501
https://doi.org/10.1016/0045-7825(92)90115-Z
https://doi.org/10.1016/0045-7825(92)90115-Z
https://doi.org/10.1137/080732936
https://doi.org/10.1111/cgf.12578
https://doi.org/10.1145/2816795.2818081
https://doi.org/10.1016/j.cag.2022.10.009
https://doi.org/10.1109/CGI.2001.934683
https://doi.org/10.1109/CGI.2001.934683
https://doi.org/10.1145/1559755.1559762
https://doi.org/10.1145/2816795.2818063
https://doi.org/10.1145/2980179.2980236
https://doi.org/10.1145/2980179.2980236
https://doi.org/10.1145/3386760
https://doi.org/10.1145/3355089.3356486
https://doi.org/10.1145/1731047.1731054

	Abstract
	1 Introduction
	2 Related Work
	3 Vertex Block Descent for Elastic Bodies
	3.1 Global Optimization
	3.2 Local System Solver
	3.3 Damping
	3.4 Constraints
	3.5 Collisions
	3.6 Friction
	3.7 Initialization
	3.8 Accelerated Iterations
	3.9 Parallelization

	4 GPU Implementation
	5 Results
	5.1 Large-Scale Tests
	5.2 Unit Tests
	5.3 Stress Tests
	5.4 Convergence Rate
	5.5 Comparisons to XPBD

	6 VBD for Other Simulation Systems
	6.1 Particle-Based Simulations
	6.2 Rigid Body Simulation
	6.3 Unified Simulations

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

