

# Virtual Blue Noise Lighting

Tianyu Li\*, Wenyou Wang\*, Daqi Lin, and Cem Yuksel,

University of Utah



*\*joint first authors* 

All images are using 12K virtual lights



# Virtual Blue Noise Lighting

Tianyu Li\*, Wenyou Wang\*, Daqi Lin, and Cem Yuksel,

University of Utah



- Virtual Light **Placement**
- Virtual Light **Distribution**
- Virtual Light **Sampling**
- Emission Profile Computation

*\*joint first authors* 



# Virtual Light Methods

i.e. Instant Radiosity



# Virtual Point Lights (VPLs)

[Keller 1997]







#### **Final Gathering**

Alexander Keller. 1997. Instant radiosity. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. 49–56.



## Virtual Spherical Lights (VSLs)

[Hašan et al. 2009]



- No geometry term singularity, but an integral
- No splotches, but blurry

Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. 2009. Virtual spherical lights for many-light rendering of glossy scenes. ACM Trans. Graph. 28, 5 (December 2009), 1–6. https://doi.org/10.1145/1618452.1618489



#### **Rich-VPLs & Rich-VSLs**

[Simon et al. 2015]



- Virtual lights with **emission profiles**
- Increased **storage cost** per virtual light

Simon, Florian & Hanika, Johannes & Dachsbacher, Carsten. (2015). Rich-VPLs for Improving the Versatility of Many-Light Methods. Computer Graphics Forum. 34. 10.1111/cgf.12585.



### **Rich-VSLs vs. Ours**

[Hašan et al. 2009]





of Prior Virtual Light Methods



#### Virtual lights with no contribution to the final image





#### Veach Door scene



#### Virtual lights with no contribution to the final image



#### outside of the room



#### "Hot zones" are often over-sampled with many virtual lights.









#### "Hot zones" are often over-sampled with many virtual lights.



from light

from camera





#### Poor distribution of virtual lights





Random



#### Poor distribution of virtual lights



Random

Ours



### **Our Solutions**

Problem 1: unused virtual lights
Problem 2: hot zones
✓ Virtual light generation from the camera

Problem 3: random distribution
✓ Sample Elimination



### Virtual Blue Noise Lighting (VBNL)





# I. Virtual Light Generation

from Camera



## **Virtual Light Generation**



- No wasted virtual lights
- Density  $\propto$  camera importance.



## **Virtual Light Generation**



- No wasted virtual lights
- Density  $\propto$  camera importance.



Blue Noise via Sample Elimination





Random



**Blue Noise** 





- Generate more virtual lights
- Remove some via **sample elimination**

Random





- Generate more virtual lights
- Remove some via **sample elimination**

**Blue Noise** 









# Initial Candidates

#### Blue Noise Distribution

-----



## **Uniform Sample Elimination**

• Using the same Poisson disk radius is not always good.





# **Adaptive** Sample Elimination

- Do sampling elimination in the local domain.
- Each individual sample will have its own radius.





## **Parallel** Sample Elimination

- Split the domain using a balanced k-d tree
- Perform sample elimination bottom up



#### **Parallel** Sample Elimination

Sequential: 26.3 s

Parallel: 2.7 s



Photon Splitting



• Photon Tracing and Incident Radiance Estimation





• Photon Tracing and Incident Radiance Estimation





• Photon Tracing and Incident Radiance Estimation





- Photon Tracing and Incident Radiance Estimation
- Radiance Conversion




### **Emission Profile Computation**

- Photon Tracing and Incident Radiance Estimation
- Radiance Conversion





### **Emission Profile Computation**

- Photon Tracing and Incident Radiance Estimation
- Radiance Conversion





### **Emission Profile** Computation

- Photon Tracing and Incident Radiance Estimation
- Radiance Conversion





# 4. Virtual Light Sampling

# Virtual Light Sampling

#### **Power-Based Sampling** (15 ms)

# Light BVH (22 ms)

# **BSDF Sampling** (14 ms)

Contraction of the local distance of the loc

### **BSDF Sampling** (14 ms)





a state of the state of the

# **BSDF Sampling** (14 ms)

Contraction of the local distance of the loc

#### MIS: Power + BSDF (18 ms)

#### MIS: Power + BSDF (18ms)







Y S Plan

(18 ms)

# **ReSTIR: Power + BSDF** (104 ms)



ReSTIR (104 ms) 

#### MIS: Power + BSDF (102 ms)





# Undersampling: Highly Specular Surfaces

## Undersampling: Highly Specular Surfaces



## Undersampling: Corners

## **Undersampling:** Corners





1

• Estimated Sample Footprint



- Estimated Sample Footprint
- Estimated Virtual Light Count

$$\int n = \bar{\rho}(\mathbf{y}) a(\mathbf{x}, \boldsymbol{\omega}_r)$$
Virtual Light
Density





• Terminate or extend the path based on estimated virtual light count.



n is large enough

n is too small



- Prevent sharp changes using two used-defined parameters:  $n_{\rm min}$  and  $n_{\rm max}$ 



n is large enough

n is too small

#### Without Camera Path Extension

#### With Camera Path Extension





# Results

### Kitchen

S.

-

8 5

#### Kitchen (Prep. + Shade) time







#### Kitchen (Prep. + Shade) time









#### Kitchen (Prep. + Shade) time



7 s





#### Veach Door





Rich-VSL (304 + 8) s

Ours (6.6 + 1.4) s



1.4 s

(6.6 + 1.4) s





Path Tracing 8 s

Ours (6.6 + 1.4) s



### **Virtual Light Distribution**

#### Rich VSLs

#### Ours




### **Virtual Light Distribution**

#### Rich VSLs

#### Ours





## Conclusion

Virtual Blue Noise Lighting



## **Virtual Blue Noise Lighting**

- Virtual Light Placement
  - Camera paths
- Blue Noise Distribution
  - Adaptive sample elimination
- Emission Profiles

#### **Photon splitting**

• Sampling

MIS: BSDF + power-based Adaptive camera path extension



# Virtual Blue Noise Lighting

Tianyu Li\*, Wenyou Wang\*, Daqi Lin, and Cem Yuksel,

University of Utah



**Source Code & More:** 

https://graphics.cs.utah.edu/research/projects/ virtual-blue-noise-lighting/

*\*joint first authors*