Fast Volume Rendering with Spatiotemporal Reservoir Resampling

DAQI LIN, University of Utah
CHRIS WYMAN, NVIDIA
CEM YUKSEL, University of Utah

Baseline
MSE: 0.148

Reference

Reference

Ours Baseline
MSE: 0.052 MSE: 0.196

Baseline

Reference

Fig. 1. A volumetric bunny illuminated by a complex environment map and emissive logos. We compare our new volumetric ReSTIR with offline
references and an equal-time baseline (combining decomposition tracking [Kutz et al. 2017] and residual ratio tracking [Novak et al. 2014]). We
show our work with (left) single scattering in 55 ms and (right) three-bounce multiple scattering in 142 ms.

Volume rendering under complex, dynamic lighting is challenging, especially
if targeting real-time. To address this challenge, we extend a recent direct
illumination sampling technique, spatiotemporal reservoir resampling, to
multi-dimensional path space for volumetric media.

By fully evaluating just a single path sample per pixel, our volumetric
path tracer shows unprecedented convergence. To achieve this, we properly
estimate the chosen sample’s probability via approximate perfect importance
sampling with spatiotemporal resampling. A key observation is recognizing
that applying cheaper, biased techniques to approximate scattering along
candidate paths (during resampling) does not add bias when shading. This
allows us to combine transmittance evaluation techniques: cheap approxi-
mations where evaluations must occur many times for reuse, and unbiased
methods for final, per-pixel evaluation.

With this reformulation, we achieve low-noise, interactive volumetric
path tracing with arbitrary dynamic lighting, including volumetric emission,
and maintain interactive performance even on high-resolution volumes.
When paired with denoising, our low-noise sampling helps preserve smaller-
scale volumetric details.

CCS Concepts: « Computing methodologies — Ray tracing.

Authors’ addresses: Daqi Lin, University of Utah; Chris Wyman, NVIDIA; Cem Yuksel,
University of Utah.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3478513.3480499.

Additional Key Words and Phrases: ray tracing, volume rendering, resampled
importance sampling, reservoir sampling, ReSTIR

ACM Reference Format:

Dagi Lin, Chris Wyman, and Cem Yuksel. 2021. Fast Volume Rendering with
Spatiotemporal Reservoir Resampling. ACM Trans. Graph. 40, 6, Article 278
(December 2021), 18 pages. https://doi.org/10.1145/3478513.3480499

1 INTRODUCTION

Smoke, fire, clouds, and other participating media are vital in virtual
scenes; modern movies, games, and simulations rely heavily on
media for realism and ambiance. But real-time rendering of partici-
pating media is challenging. Even traditional raster pipelines have
separate order-independent transparency passes [Wyman 2016] and
data structures for volume lighting [Kaplanyan and Dachsbacher
2010]. With real-time ray tracing [Kilgariff et al. 2018] and more
complex ray-traced lighting [Majercik et al. 2019], integrating dy-
namic ray-traced media will be vital for achieving a uniform look.

In this paper, we introduce an effective path sampling solution for
real-time volume rendering with multiple scattering and volumetric
emission. To do this, we generalize resampled importance sampling
[Talbot et al. 2005] and spatiotemporal reservoir resampling [Bitterli
et al. 2020] to path integrals. These have proven effective for sam-
pling direct illumination on surfaces. We generalize them to path
space, providing importance sampling that closely approximates

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480499
https://doi.org/10.1145/3478513.3480499

278:2 « Lin, Wyman, and Yuksel

our integrand: a path integral formulation of the volume render-
ing equation. We also present numerous optimizations to minimize
computation and memory overhead. As a result, we can estimate the
multi-dimensional volume rendering integral while shading just one
path per pixel, enabling real-time volume rendering under arbitrary
scene illumination, including environment maps, area lights, and
volumetric emission.

Our technical contributions include:

e A generalization of resampled importance sampling (Sec-
tion 3) and spatiotemporal reservoir resampling (Section 4)
to complex path integrals,

o An efficient importance sampling estimator for the volumetric
path integral (Section 3.3), including multiple scattering and
volumetric light emission,

e A temporal reprojection (Section 4.4) and practical velocity
resampling method for robust temporal reuse (Section 5.2),

e Optimized path space transmittance estimates (Section 5.1).
These only affect importance sampling, not final path through-
put, allowing use of efficient biased estimates without biasing
the results (e.g., sampling lower resolution volumes).

Our renderer runs interactively, reusing carefully-chosen paths
to evaluate the volume rendering equation. While we can produce
unbiased renderings (with static volumes and dynamic lighting), by
allowing a little bias (Section 4.4) we can reduce sampling variance
and handle more dynamism. Our work significantly lowers variance
compared to state-of-the-art real-time path sampling (Figure 1).

Section 2 reviews prior work, summarizing resampled importance
sampling (RIS) and spatiotemporal reservoir resampling (ReSTIR).
In Section 3, we develop an RIS estimator to efficiently sample
the volumetric path integral. In Section 4, we modify ReSTIR’s
iterative resampling to efficiently reuse spatiotemporal volumetric
path samples. We provide key implementation details in Section 5.

2 BACKGROUND

The volume rendering equation represents incident radiance L at
point x¢ from direction w, and integrates the outgoing radiance
through volumetric media L and the surface or light behind it, L*

L(x0,0) = /0 "I o0 a0 LM (xw)dz (1)
+T(xg © xs5) L*(xs = x0) ,

where X = X9 — zw,, is a point along direction w, towards xg, o7 (x)
is the extinction coefficient at x, and the transmittance function
T(x¢ <> x) represents visibility between x¢ and x

T(x0,%) = ¢ or(x0=ywo)dy, ()

and x5 = X9 — zsw, is the corresponding surface along the ray. L™
includes volumetric emission L] and in-scattering

LM%, w0) = 283 1m (oo 4+ I

o (x) e Ut(x)/sp(x,w,wo)L(x,w)dw,

®3)
where 0, and o5 are absorption and scattering coefficients with
01(x) = 04(x) + 05(x), S is the sphere of all directions, and
p(X, ®, w,) is the media’s phase function.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

With multiple scattering, computing L(x, @) inside the integral
from Equation 3 via Equation 1 is costly, particularly for real-time
rendering. For simple single scattering, with no volumetric emission
and a few point or directional lights, volumetric shadow mapping
can achieve real-time rendering performance [Delalandre et al. 2011;
Gautron et al. 2013; Jansen and Bavoil 2010; Kim and Neumann 2001;
Salvi et al. 2010; Yuksel and Keyser 2008]. But these are inefficient for
more general lighting conditions and multiple scattering. Modern
games use "froxel" representations [Hillaire 2015] to align volumes
with the view frustum to minimize memory incoherence during
traversal, but otherwise behave similarly.

2.1 Monte Carlo Sampling for Volume Rendering

Path tracing and Monte Carlo sampling provide a more general
solution for integrating the volume rendering equations 1, 2, and 3.

Importance sampling distance z (Equation 1) in a homogeneous
volume (constant o;) with a probability distribution function (PDF)
proportional to ;T (X,) is trivial; the resulting cumulative distri-
bution function (CDF) 1 — e?¢ is easily inverted. The resulting z
values are called the free-flight distance. In heterogeneous volumes,
regular tracking [Sutton et al. 1999] represents o;(x) with piece-
wise simple functions with analytically invertible CDFs, allowing
tracking of each piece separately to find scattering events via an
exact PDF. In general heterogeneous volumes, ray marching finds
these events with an approximated PDF [Novék et al. 2018] , which
introduces bias to the result. Null-collision methods avoid bias by
introducing fictitious media to simplify the CDF. For example, delta
tracking [Raab et al. 2008; Woodcock et al. 1965] uses piecewise
constant majorant & (for & > o;) and determines null collisions via
a secondary Monte Carlo process, but the sampling PDF is generally
not available in closed form.

Recently, Miller et al. [2019] introduces a special path space for-
mulation including null scattering to obtain analytical PDFs. But
null-collisions can reduce performance in highly uneven volumetric
densities, when long chains of short null collisions occur. Accel-
eration structures (e.g., super-voxels [Szirmay-Kalos et al. 2011]
and kd-trees [Yue et al. 2011]) partition space with separate, tighter
majorants to improve performance. Decomposition tracking [Kutz
et al. 2017] reduces overhead by splitting media into a constant
density control volume and a residual volume, where tracking occur
separately and the minimum distance is taken. Kutz et al. [2017]
introduces weighted delta tracking [Galtier et al. 2013] to allow
non-tight upper bounds in the residual volume.

Distance sampling techniques also apply to transmittance es-
timation. For example, delta tracking gives a per-sample binary
transmittance decision, based on if a real collision occurs. Ratio
tracking modifies delta tracking, replacing stochastic termination
with its expectation, giving non-binary transmittance and improv-
ing convergence speed. Residual ratio tracking uses fewer steps for
ratio tracking by separating residual and control components of
the extinction function [Novéak et al. 2014] and applies in various
contexts [d’Eon and Novéak 2021; Szirmay-Kalos et al. 2017]. Recent
next-flight estimators [Novak et al. 2018] improve delta and ratio
tracking efficiency if the fictitious media has a lower density.

New integral formulations using power-series expansion improve
transmittance estimation via sample stratification [Georgiev et al.
2019]. Kettunen et al. [2021] propose unbiased ray marching that cor-
rects biased methods with occasional higher order terms, leveraging
ray marching efficiency to compute low-noise transmittance.

Importance sampling @ in the phase function p [Henyey and
Greenstein 1941] is similar to any bidirectional scattering distri-
bution function. However, explicitly sampling light sources with
next event estimation (NEE) often increases efficiency. NEE can be
combined with other sampling via multiple importance sampling
(MIS). Miller et al. [2019] use MIS to integrate in path space using
previously unknown PDFs. To efficiently integrate volumetric emis-
sion, Simon et al. [2017] introduce forward next event estimation
(FNEE) that samples solid angle to perform line integration.

All these methods consider local sampling, rather than impor-
tance sampling full paths. This limits quality, increasing samples
needed to converge and reducing their real-time appeal. Recent de-
noisers can filter noisy samples to a final image. But sample counts
must be sufficient to achieve post-filter temporal stability. Thus, im-
proving sample quality is vital, even with state-of-the-art denoising.

2.2 Bidirectional Volume Rendering

Bidirectional methods consider entire paths to improve sampling
quality. Equiangular sampling [Kulla and Fajardo 2012] jointly sam-
ples a light vertex and the penultimate path vertex receiving in-
scattered light. Joint importance sampling [Georgiev et al. 2013]
allows double scattering with a joint distribution. Zero-variance
random walks further extend joint sampling, building random walks
with near-zero variance by considering all terms in the path integral.
In some scenarios, this applies to subsurface scattering [Ktivanek
and d’Eon 2014; Meng et al. 2016] and can improve path guiding
[Herholz et al. 2019] in general participating media.

Other bidirectional techniques estimate photon density using
volumetric photon maps [Jensen and Christensen 1998]. Density
estimation queries can be improved using beams [Jarosz et al. 2008].
Higher dimensional primitives, such as photon beams [Jarosz et al.
2011], photon planes and volumes [Bitterli and Jarosz 2017], and
photon surfaces [Deng et al. 2019] can significantly reduce variance.

Bidirectional techniques based on virtual lights [Novak et al.
2012a,b] also benefit from higher dimensional light representations.
Combining different kinds of density estimation with path trac-
ing [Kfivanek et al. 2014] often provides a robust framework to
optimally sample across various scenes.

However, bidirectional methods often use complex data structures
with costly generation and maintenance phases. This adds often
insurmountable engineering complexity in real-time contexts.

2.3 Path Reuse

Photon- and VPL-based bidirectional methods reuse subpaths, but
reuse can occur between pixels [Bekaert et al. 2002]. This can dra-
matically reduce variance, though it imposes fairly high storage
and computation costs; paths must explicitly remain in memory to
benefit others, and visibility rays are required to connect neighbors.

More recent work reuses paths via finite differences in the gra-
dient domain [Lehtinen et al. 2013], which can also apply to path

Fast Volume Rendering with Spatiotemporal Reservoir Resampling + 278:3

tracing [Kettunen et al. 2015] and volume rendering [Gruson et al.
2018]. Similar to the spatiotemporal resampling we use in this paper,
these techniques also leverage correlations between pixels.

However, spatiotemporal resampling reuses samples indirectly
to improve PDFs, rather than explicitly reusing paths for shading.
In this sense, it is more akin to path guiding [Vorba et al. 2019], if
done in a feed-forward, streaming fashion.

2.4 Resampled Importance Sampling (RIS)

Our volume sampling builds on resampled importance sampling (RIS)
[Talbot et al. 2005], Given function f(x) defined over domain x € D,
RIS provides an importance sampling estimator for the integral:

I:‘/’!f(x)dx. 4)

Let p be a target PDF without a practical sampling algorithm. RIS
generates M > 1 candidate samples X = {x1,...,xp} using a (sub-
optimal) source PDF p. Then, it randomly selects a sample x;, for
r € {1,..., M}, using discrete probabilities

_ w(xr) wi _pX)
plxr|x) = —Zﬁilw(xj) ith w(x) 00 (5)

The resulting 1-sample RIS estimator can be written as

1 M
D = Ep o) | 37 D wix)

=1

_ fxr)

with E[,(x,) =)

. (6)

The parenthetical term corrects for differences between the actual
probability used to sample x, and the desired PDF p(x;,). This gives
an unbiased estimate if p(x) and p(x) are non-zero for all x with
non-zero f(x). As M — oo, the distribution of x, approaches p.

RIS is particularly effective if p closely approximates f and gener-
ation and evaluation of candidate samples x; and w(x;) are cheap.
In Talbot et al. [2005], x is a point on a light source, p(x) is the
light sampling PDF. f(x) is unshadowed reflected radiance, includ-
ing BSDF, geometry term, and incident radiance. This reasonably
approximates the integrand, without expensive visibility queries.
When directly lighting opaque surfaces, this improves sampling
quality over standard importance sampling.

2.5 Spatiotemporal Reservoir Resampling (ReSTIR)

Spatiotemporal reservoir resampling (ReSTIR) [Bitterli et al. 2020]
transforms RIS into a streaming algorithm, avoiding storage of most
candidate samples by using weighted reservoir sampling [Chao
1982]. It is designed for direct illumination sampling from many
lights for real-time rendering. For each pixel, ReSTIR maintains
a reservoir that stores a sample x;, selected from the previous m
candidates. Each new candidate x;;,41 is selected with probability

w(Xm+1))
ST w(xy)

This can be seen as streaming candidate samples into a reservoir.
Since the reservoir stores only the selected sample and a running
sum of weights Z;":ll w(x;), many candidate samples M can be con-
sidered without additional storage, improving the sampling quality.

™

P(xm+1|X U {xm+1}) =

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

278:4 « Lin, Wyman, and Yuksel

Reuse Prior
Frame Samples

Reuse Neighbor
Pixel Samples

Generate

W

Resampling Resampling Resampling
®RS) |7 ws [T w®S) |

Fig. 2. Extending ReSTIR [Bitterli et al. 2020] for participating media
entails updating each component of this ReSTIR pipeline: defining
candidate generation in path space (see Section 3.2), RIS estimators
to efficiently evaluate high-dimensional integrals (Section 3.3), and
spatial and temporal sample reuse in this domain (Section 4).

ReSTIR also enables spatiotemporal reuse by combining the reser-
voirs of nearby pixels and the previous frame, exponentially increas-
ing the effective candidate sample count (Figure 2). While rendering
the first frame, each pixel g allocates a reservoir and streams M
newly generated candidates to select a sample x4. Then, the reser-
voirs of a random subset of nearby pixels are combined. Let ¢’
represent a pixel near g. Their two reservoirs cannot simply be
combined, unless the target PDFs f4(x) and py (x) for both pix-
els are identical. Generally, this is not the case and pq (x) # pg (x).
Therefore, ReSTIR includes a correction factor W' —q for using the
selected sample x¢ in reservoir ¢’ for pixel g, defined as

N M
Pq (xq') sum sum bq (xj)
Wyl —g = — M where wiM™M = . (8
7297 po(xg) @ q ; g () ®)

Note that w(sl‘,‘m is the running sum in the reservoir from initial
candidate generation. For multiple iterations of reuse (chained RIS
passes), w¥'™ becomes the running sum from the prior RIS pass.

The resulting estimator combining N neighboring reservoirs from
pixels q1, . .., gn can be written as

N
NLM _ . 1
<I>ReSTIR = qu (xr) (ﬁq ; Wq,»—)q) s (9)

where x, is the sample selected from one of the N+1 reservoirs,
Mg=(N+1)M is the total effective candidate sample count for pixel
q, and we define qo = q. Yet, this leads to a biased estimator, because
Pq (x) can be zero for x with non-zero pg(x). For correcting this bias,
Bitterli et al. [2020] propose replacing the 1/Mg term in Equation 9
with the MIS weight of the selected sample

_ b))

M Zf\io ﬁq,— (xr) ’
where p, denotes the PDF of the reservoir that produced x;.

This MIS weight is stochastic (it depends on the chosen sample).

Although cheaper to evaluate than the deterministic MIS weight
proposed by Talbot [2005], it introduces noise. The deterministic
Talbot MIS can be used by multiplying the weights of samples in
Equation 9 with an additional term:

whew . quqi (xqi)
q:—q = Wqi—q N - »
M Y= Pgs (xq;)

(10)

(11)

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

Additionally, ReSTIR allows temporal reuse by passing the final
selected sample x, forward for reuse next frame. Combining spatial
and temporal reuse, the effective candidate sample count My grows
exponentially. To prevent unbounded influence of temporal samples,
a user-defined temporal limiting factor Q is used to enforce My <
OM. When My exceeds this limit, the running sum is scaled by
QM /My and then My is updated as My < QM.

But the benefit of spatiotemporal reuse is not indefinite. If p from
neighbor reservoir ¢ substantially differs from fg, spatially reusing
q’ can negatively impact sampling quality instead of improving
it. Thus, applying heuristics to selectively reject reservoirs and
using high quality MIS to reweight samples can substantially reduce
variance [Bitterli 2021; Wyman and Panteleev 2021].

ReSTIR is highly effective in estimating direct illumination on
opaque surfaces from many lights [Bitterli et al. 2020]. It chains RIS
passes spatiotemporally to quickly accumulate many samples. Addi-
tionally, successive RIS passes can use higher quality p to improve
sampling quality at relatively low cost. While p typically contains
unshadowed reflected radiance, ReSTIR injects visibility into p at a
lower frequency (known as visibility reuse).

Boksansky et al. [2021] store reservoirs in world space so a path
tracer can efficiently perform NEE on secondary path vertices. Con-
current work by Ouyang et al. [2021] extends screen space ReSTIR
for surface global illumination. This can be viewed as a special case
of our method, which handles both surface and volume transport
and interreflections between them (see Figure 1, right).

We extend the concepts in ReSTIR to real-time volume render-
ing; to achieve that, we solve various challenges when resampling
(Section 3) and reusing samples (Section 4) in volumetric path space.

3 RIS FOR VOLUME RENDERING

We target extending ReSTIR [Bitterli et al. 2020] to volumetric path
tracing. As ReSTIR builds on RIS [Talbot et al. 2005], we begin by
developing an RIS estimator for the volume rendering equation.

Volume rendering involves higher-dimensional integrals than the
direct surface illumination in Bitterli et al. [2020] and Talbot et al.
[2005]. Visibility alone forms an integral along primary rays. Thus,
we cannot just sample light positions; we must sample entire paths.

In this section, we provide a path integral representation of the
volume rendering equation (Section 3.1), describe how we can gen-
erate candidate paths (Section 3.2), and explain how to estimate the
volume rendering equation using RIS (Section 3.3).

3.1 Path Integral Representation of Volume Rendering

Let A denote a path. We can write the volume rendering equation
(Equation 1) as a path integral

L(x0, w0) = /AF(A) dA, (12)

where A is the set of all paths and F(A) is the incident radiance
through the path A.

Consider a path A with k scattering events, forming k + 2 vertices
X0, - - -» Xy 1, With xo a camera vertex and xy,; a light vertex. A light
vertex can be a point on a light surface or inside emissive media.
For brevity, the formulations below assume intermediate vertices

Fig. 3. A random walk with K vertices generates 2K candidate paths
for later reuse: K are scattering paths that terminate at a light (yellow)
with next event estimation and the remaining K are emission paths
terminating in the media due to volumetric emission (red).

X1,...,X} are in the medium, but this can easily be extended to
points on surfaces (e.g., see Figures 1 and 18).

Let z; = |xi+1 — X;| be the distance between consecutive path
vertices and w; = (Xj+1 — X;)/z; be the direction towards the next
path vertex. Then, we can write the incident radiance as

F(A) =T5(A k) T(xk © Xpeq1) G(xk © Xpeyr) LXpr = Xge), (13)

where geometry term G; = G(xj—1 < x;) is 1 using solid angle
measure and 1/ z? using volume measure, and Iy represents path

throughput:

k
Is(A k) = 1_[T(xi-1 © x;) os(x7) G pi , (14)
i=1
with p; = p(xj, —wi-1, w;) the phase function and L(xp,; — Xi)
the emitted radiance at xj,; towards x. Note, for a path with k = 0
(i-e. no scattering events) we take Is(A,k) = 1.
The emitted radiance L can come from either a light sample at
Xg41, if A is a scattering path, or volumetric emission at Xz, if A is
an emission path. More specifically, we can write

LS (Xpq1 — Xg) if scattering path,
0a(Xges1) L (Xge1 — Xg) if emission path.

(15)

We use L® to represent radiance from the light. The notation assumes
the source is an emissive surface, but it can easily be extended to
other lights. For example, for an environment map X, is an infin-
itely distant vertex and L’ is the radiance along direction x;,; — X.

L(Xg1 = Xg) = {

3.2 Generating Path Samples

To use an RIS estimator for the path integral formulation of volume
rendering (Equation 12), we must generate numerous random paths
A with PDF p(A).

Our path generation approach is similar to path tracing with next
event estimation, as shown in Figure 3. We start with a ray from xg
towards wo = —w,. At each step, we first pick a random distance
z; along our ray with PDF p(z;|x;—1, wi—1). This specifies the next

Fast Volume Rendering with Spatiotemporal Reservoir Resampling « 278:5

path vertex x; = xj_1 + zjw;—1. Then, for each scattering event, we
pick a scattering direction w; with a PDF p(w;|x;). We repeat this
step to generate a random walk of a desired length.

As shown in Figure 3, each vertex x; on our random walk spawns
two candidate paths to feed our resampling. The first is a scattering
path, using next event estimation to sample a light for x;41. If our
media emits light, we generate an emission path ending at x;. Both
scattering and emission paths end at a light: either on a surface or
in the media. Emission at intermediate vertices is ignored, as it is
accounted for on shorter paths (i.e. spawned at vertex x;, for j < i).

With this procedure, the PDF of a scattering or emission path
with k scattering events and k + 2 vertices can be written as

&
p) = [[p(ailxi-r@i-1) Gi pleilxi) (16)
i=1
where k’ = k for scattering paths and k + 1 for emission paths. Here,
the PDF of sampling a direction is

pi ifi <k’,
p(@ilxi) = | pNEE (@K [xk)
1 if i = k’ and emission path.

if i = k” and scattering path, (17)

where pNgg (@g | X) represents the light sampling PDF used for next
event estimation.

The PDF of sampling a distance z; along a ray from x;_1 towards
;-1 depends on the sampling method used. When using RIS with-
out ReSTIR, delta tracking [Woodcock et al. 1965] is a convenient
choice for this task. Delta tracking has a very desirable PDF

pzilxi-1, wi-1) = T(xi-1 © xi) or(xi) - (18)
A problem with this PDF is transmission T is either not available
in closed form or expensive to compute, and it must be reevaluated
repeatedly (as part of p(A)) when resampling via RIS. Fortunately,
we can select target PDF p(A) to cancel terms in p(A), avoiding
explicit evaluation of T in p(A). But when spatiotemporally reusing
samples, this cancellation is no longer possible; thus, we must re-
place delta tracking with another sampling method, as discussed in
Section 4.

A random walk up to (a user-defined maximum of) K steps gen-
erates up to K scattering paths with 0 < k < K and K emission
paths with 0 < k < K, as shown in Figure 3. But a random walk
may terminate early, if it exits the media prior to the K scattering
event. Let n be the total number of paths generated by a random
walk (i.e. n < 2K). If sampling one of these n paths uniformly, the
joint sampling PDF p(A) can be written relative to the PDF of the
random walk p(A) as

P =2 p(A) (19)

To generate more candidate paths, we can perform additional
random walks starting from xo.

3.3 RIS Estimation of Volume Rendering

We generate paths using M random walks. Each random walk j
produces nj paths. Uniformly selecting one of the n; paths as a
sample for the path integral leads to high variance. Instead, we use
RIS to select one path from each random walk to estimate the path

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

278:6 « Lin, Wyman, and Yuksel

integral, treating the n; paths as stratified samples with source PDF
[7(/15.) for each path i € {1,...,n;} and using a target PDF ﬁ(/lj.). If
M =1, then this RIS estimator can be written as
nj o Al) nj *(Ai')
1 & P4 p(A;
(L(x0.@0)) iy = Eg(A) —) ——== = E5(A) - (20)
ris P\ nj;p()»}) P ;P(Aj)
where Ej (A;) = F(A;)/ﬁ(l;) and A; represents the selected path.
Notice the 1/n; factor cancels the same value inside ﬁ(l;). Our
supplemental document has a more rigorous derivation. Given M

random walks, we again resample to select one of the M paths
AL, ... A}, (note index r varies with j). As each candidate path l;

comes from a prior RIS step, they must be weighted appropriately (by
the running sum from the prior RIS round). Thus, the RIS estimator
to select one path out of all M random walks is

M nj
LM =B [> D wah | ey
j=1i=1
We simplify the notation to A, (instead of A,) to represent the
final path sample from this round of RIS. Here both E;(4,) =
F(Ar)/p(Ar) and w(/lj.) = ﬁ()lj.)/p(/lj.) depend on chosen target
PDF p(A).

Ideally, p(A) closely matches F(A) but is cheaper to compute,
as p(A) gets evaluated for each candidate path sample. Therefore,
we use F(A), a cheaper approximation of F(A), for paths with next
event estimation

. F(A) if scattering path,
p(A) = { &P

. (22)
F(A) if emission path.

This approximation comes from simply using a cheaper transmit-
tance estimate T for light samples (discussed in Section 5.1):

F(A) = Ts(A) T(xx © Xpp1) G(Xp © Xpeat) Lxpyr = X)) - (23)

This particular definition of (A) includes the same transmittance
terms T as p(A). Thus, all T terms cancel when computing w(A) =
p(A)/p(A), such that

k
w) = W) | | os(xi) 1)
i=1 or (x:)
where
Pk T (R4 OXiesr) Giean L (Ko = %) scattering path,
Wi(A) = PNEE (@ [xk) (25)
k 0a(Xp+1) Lm i L. th
o1 (k) € (Xke1 —~ Xk) if emission path.

This particular choice for p(A,) also simplifies the computation of
the E; (Ar) = F(A;)/p(A,) term, such that

T o) 4 scattering path,
Eﬁ(Ar) = {T(Xkakn) . o (26)
1 if emission path.

Note the only remaining T term is needed to compute direct
illumination for the one chosen path sample A, in E5(A;). This
T term appears in no PDFs, only final shading, so we can afford
unbiased estimates or even analytical methods. We discuss our
choices for evaluating and estimating T in Section 5.1.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

All source PDFs, however, cannot use stochastic estimation or
biased approximation. While resampling allows arbitrarily defining
Pp(A) (including approximations), approximating source PDF p(A)
after choosing sample A introduces estimation error. By carefully
choosing p(A), we avoid expensive T terms in our PDFs and al-
lows building an efficient RIS estimator for volume rendering with
multiple scattering and volumetric emission.

This RIS estimator can be performed in a streaming manner using
weighted reservoir sampling [Chao 1982], such that only the one
selected sample per pixel is stored, instead of explicitly storing all
M candidate path samples. We provide implementation details in
our supplemental document.

4 SPATIOTEMPORAL REUSE

Quality of the RIS estimator in Equation 21 depends on the candidate
sample count M. By reusing a pixel’s candidate samples when eval-
uating neighbor pixels, we can substantially increase the effective
per-pixel candidate sample count with minimal overhead. Similar
to the direct illumination sampling in ReSTIR [Bitterli et al. 2020],
we leverage streaming RIS and screen-space spatiotemporal reuse,
storing intermediates in per-pixel reservoirs.

We generate M candidate samples A; . A]rw for each pixel. Each
pixel selects one candidate A, using RIS and weighted reservoir sam-
pling. We then consider the samples selected in nearby reservoirs
and from the prior frame. Combining these reservoirs, we pick one
sample per pixel to evaluate.

While our reuse follows the pattern of Bitterli et al. [2020], key
changes are needed to reuse volumetric path samples. Generating
candidate paths for spatiotemporal reuse requires sampling a closed-
form PDF, which requires updating the candidate generation process
in Section 3.3, as we describe in Section 4.1. We discuss reusing paths
between reservoirs in Section 4.2; unlike reusing direct light samples
in ReSTIR, paths can be mapped between reservoirs in different ways
with varying trade-offs. We introduce changes for spatial reuse in
Section 4.3, refining the transmittance estimation and removing
bias via different MIS weighting. Finally, in Section 4.4 we introduce
a new stochastic reprojection for temporally reusing volumetric
path samples, as surface motion vectors fail in volumes. Combined
spatiotemporal reuse dramatically increases effective sample count,
giving better quality than either reuse alone, as shown in Figure 4.

Importantly, our work combines transmittance estimates of vary-
ing quality, as we need a closed-form PDF for distance sampling,
an efficient way to resample transmittance spatiotemporally, and
unbiased transmittance for final shading (see Sections 4.1 and 4.3).
We exploit resampling to iteratively refine transmittance, doing
more expensive computations at lower frequency (see Figure 5).

4.1 Generating Candidate Samples for Reuse

When reusing samples A from neighbor pixels or prior frames, we
must explicitly compute (i.e. resample) the target PDF p(A) at the
current pixel and frame. Thus, using a target p(A) containing ex-
pensive transmittance terms T (as in Section 3) makes spatiotem-
poral reuse computationally infeasible. But not including T in p(A)
means cancellation will not occur (in Equation 24) while computing
w(d) = p(A)/p(A), requiring explicit transmittance computation

RIS ny (No Reuse)

292 .Q' R . 17 ms 32 ms

Temporal Reuse Only

Fast Volume Rendering with Spatiotemporal Reservoir Resampling « 278:7

Spatial Reuse Only Spatiotemporal Reuse

42 ms 45 ms

11 ms

Fig. 4. Both spatial and temporal reuse improve quality significantly. (Left) scenes with spatiotemporal reuse, and (right) insets comparing quality
and performance without reuse, with only spatial or temporal reuse alone, and with spatiotemporal reuse. (Top) the Bunny Cloud scene uses a
quickly rotating environment map and (bottom) the Plume scene has dynamic volume data. See the supplementary video for animated results.

[o]o] Lo
-1

[CTo[e]o] == fo] == [o]

™ w T = T

Spatiotemporal Reuse Final Shading

mp [0]

Initial Sampling
Fig. 5. During sample reuse, transmittance gets refined from an initial
piecewise constant approximation T* to trilinear interpolation for
ray marching T to an analytical evaluation for shading T. But we
always compute transmittance for NEE via ray marching (except final
shading). Buckets visualize reservoirs, with initial candidates marked
in blue, reservoir samples in red, and final shaded samples in purple.

for each candidate path (in p(A)). To avoid this expense, we avoid us-
ing T terms in both p(A) and p(A), replacing delta tracking (during
candidate path generation) with an alternative distance sampling
method with a closed-form PDF that is cheap to evaluate.

We use regular tracking [Sutton et al. 1999]. Regular tracking
may not outperform delta tracking, but it can be accelerated using
a piecewise-constant approximation of the volume. For voxelized

volumes, all points x within voxel v with constant density o} , get
0f(x) = o} ,. Let T* denote transmittance between two points in
this piecewise-constant volume. The PDF for regular tracking with
piecewise-constant volume is then

P(zilxi—1, wi-1) = T(xi-1,%;) 07(x;) (27)

Here, the transmittance term can be written as

T'(xi1, %) = [[e %oie, (28)
[
where d; , is the length of line segment X;_1X; inside voxel v (thus,
di» = 0 for voxels that do not intersect X;_1x;).

We use this piecewise-constant volume only for importance sam-
pling, i.e., to generate candidates Aj. and evaluate their PDFs p()L;)
and ﬁ(/lj.). When computing final path throughput, F(A,), for the
one chosen sample A, per pixel, we use the more expensive, unbi-
ased transmittance function T and density o;.

Care is required when generating candidates from the piecewise-
constant volume. If o; is non-zero anywhere inside voxel i, crz ; for
the voxel must be non-zero to avoid bias. For example, we cannot
trilinearly interpolate a voxel grid for T and use nearest sampling
for T*. Nearest sampling can return zero some places where trilinear
sampling gives non-zero density, which would introduce bias. To
avoid this, we use nearest sampling for T*, except in zero-density
voxels where we return the average density of their neighbors.

For further acceleration, we can use a lower resolution piecewise-
constant volume for path generation. Our results (Section 5.1) show
that defining this piecewise-constant volume at lower resolution

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

278:8 « Lin, Wyman, and Yuksel

s/
’ r 3
‘))5’” mjrl l’
! / g
/
§
' (‘) f (,\)' ‘*)'zf/
. Ly X
u)o ¢ » ’ XY “’vo,/’XTk"'vwX%’
-4 % PR o %
x . X
1
X,

() Vertex Reuse (b) Direction Reuse

Fig. 6. Path A (black) is created from a neighbor pixel’s path A" (blue).
Vertex x, is the same distance along primary ray o (as x; along w;).
Vertex reuse connects X1 to x; (red segment) to form the rest of A.
Direction reuse takes w; =] and z; = z] along the remaining path.

than the original volume substantially improves performance with
only minor quality impacts.

4.2 Path Reuse

To reuse paths we must create a path A with vertices xo, . .., Xg41
in pixel q based on a path A’ from a different pixel ¢’ with vertices
x('], .. k+1 Asboth A and A’ start at the same camera position, we
get xo = x(. However, the same is not true for the other vertices. The
pixels may have different primary ray directions wg # @), so the
next vertex X1 = Xg + z;@o must be different as well (i.e. x; # x;).
We can, however, use the same distance along the primary ray for
both paths, such that z; = z7.
For the following vertices, we consider two options (Figure 6):

e Vertex reuse by simply setting x; = x] for i > 2, or

e Direction reuse by taking w; = @] and z; = z].

Vertex reuse reduces computation, as we need not recompute
T*(x; « xj41) for i > 1. However, it includes an unbounded geom-
etry term G(x; < x3) = 1/|x2 — x1|? that introduces fireflies. In
Bitterli et al. [2020], singularities occur around corners and edges,
but in volumes they can occur anywhere.

Direction reuse must compute T*(x; <> X;+1), but avoids these
artifacts. It is also possible to combine both approaches by reusing
directions for a desired number of scattering events then switching
to vertex reuse; this reduces the probability of fireflies and bounds
the cost. Our experiments show reduced noise for a slight cost
increase with direction reuse (see comparison in the supplemental
document), so results in the paper all rely on direction reuse. While
long very paths may be initially generated, they are unlikely to be
selected and reused via RIS as they carry less energy. This helps
bounds the average cost of direction reuse.

As for the last vertex xk » if on a light surface or in emissive
media, we take xxy; = x; .. If our reused path samples the envi-
ronment map, we take @y = ;.

Vertex reuse in the presence of surfaces is straightforward, by
simply adding surface vertices to the path. For direction reuse, if x;
lies on a surface, we put x; onto the closest surface along the ray
starting at x;—1 with direction w;_1. Hence, if the scene does not
contain a volume, only reflection directions are reused.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

4.3 Spatial Reuse

After generating M per-pixel candidates, each pixel ¢’s reservoir has
selected a path A4 (i.e. A, for each g). Next, we spatially reuse from
neighbor pixel reservoirs, using RIS to combine the neighbor reser-
voirs with the current pixel’s. For each neighbor ¢’, this involves
computing correction factor wy 4 (per Equation 8), using

poy(Aqy M U, pg (AL
Wq'—q = {)q(—q)w;’m , where sum = Z Z 7 5
Pq’(lq’) j=1i= 1Pq (/‘l
(29)

Here, the same path sample Ay contains different vertices in
pixels g and q” due to the reuse of z; along different rays and later
direction reuse. Therefore, when computing fg/py in wg -, not
all transmittance terms in the PDFs cancel, as they are evaluated for
different pixels (none of them cancel with direction reuse and only
some of them cancel with vertex reuse).

As noted in Section 4.1, as a byproduct of distance sampling we
used a piecewise-constant volume to compute transmittance T*.
However, when recomputing transmittance values during reuse,
there is no computational need for such simplification (cancellation
of terms generally cannot happen between neighboring pixels). Plus,
the piecewise-constant sampling enlarges non-zero density regions
and leads to suboptimal sampling quality.

Instead of keeping the lower quality transmittance estimate T*,
during resampling we can update target function pg to use higher
quality transmittance than the input pg values. For resampling pgq
during reuse, we compute a new transmittance estimate, "f, using
ray-marching with trilinearly filtered densities to improve subse-
quent sample quality. Because this (biased) ray marching is only
used during importance sampling, and not for final throughput
in F(A), it does not bias the rendering. An additional advantage
of ray marching is the ability to tune step size, depending on our
resampling budget.

Thus, pq # pg even for q = ¢, simply because we use an updated
target function for pg (with T instead of T*) for Pq- This improved
transmittance estimate behaves similar to Bitterli et al.’s [2020]
visibility reuse.

We must also consider that some valid path samples A for pixel g
may never be sampled by a neighboring pixel ¢, i.e., pg (1) may
be zero for some A with non-zero pq(A). Simply ignoring this in-
troduces sampling bias, excessively darkening the results. Bitterli
et al. [2020] correct this via stochastic MIS weighting (i.e. Equa-
tion 10). Although faster than the deterministic MIS (Equation 11)
weighting introduced by Talbot [2005], we found stochastic MIS
excessively noisy in volumes, as shown in Figure 7. Heuristically
rejecting spatial neighbors based on features like surface normal or
depth is effective for reducing the noise on surfaces [Wyman and
Panteleev 2021], but for volumes such features are stochastic, mak-
ing heuristics-based rejection challenging. Instead, we use Talbot
MIS for spatial reuse; while it has quadratic cost, this is acceptable
when using a small number of spatial neighbors.

4.4 Temporal Reuse

Temporal reuse significantly improves sample quality by incorpo-
rating knowledge from prior frames. The challenge for such reuse

L T N L B

(a) N IS (24 s) (b) Stochastic MIS 31 ms)

Fast Volume Rendering with Spatiotemporal Reservoir Resampling + 278:9

(c) Talbot MIS (3 ms) (d) Reference

Fig. 7. Sample reuse without fireflies requires MIS to appropriately weight samples. Bitterli et al. [2020] introduced a cheaper O(N) stochastic

MIS, though for our volume formulation the more expensive Talbot [2005] MIS works better.

(a) Spatial reuse only

(b) No reprojection (c) Temporal reprojection

(e) Spatial reuse only (f) No reprojection

(d) Reference

(g) Temporal reprojection

(h) Reference

Fig. 8. Under camera motion (top) or volume deformation (bottom), temporal reprojection helps identify good samples for reuse. At left, we show
references using motion blur to illustrate the magnitude of per-frame motion. At right, we show insets from a single frame without motion blur.
(a.e) Only spatial reuse within the current frame. (b,f) Without temporal reprojection we reuse from inappropriate prior frame locations, causing
halos and masking the noise reduction from temporal reuse. (¢,g) Our novel temporal reprojection reduces the haloing and generally reduces noise.

See the supplemental video for full comparison.

is finding relevant samples by temporally reprojecting prior frames,
including changes from camera motion and volumetric deformation.

But temporal reprojection is ill-defined for volume rendering.
The media in any pixel may move in many directions, so no single
“correct” motion vector can tell us what prior-frame data should be
reused.

We approach the problem probabilistically. With temporal repro-
jection we seek motion vectors that select, with high probability,
prior frame reservoirs containing useful data. For example, if most
media in a pixel has one motion vector, reusing a reservoir corre-
sponding to that motion likely reduces variance best (e.g., prefer-
entially sampling motion from denser media in a pixel instead of
following a closer, wispy cloud’s motion).

To that end, we use the motion vector at x1, the first vertex on
pixel g’s selected path A4 (prior to spatial reuse). To compute the
motion vector, we treat x; as a particle such that its previous frame’s
position is determined by the velocity field of the volume. This
randomizes the choice of motion vector, allowing any visible media
to (potentially) contribute motion, using the target PDF p(z; |x, @o).
Media with higher p(z1|xo, wo) has a higher probability to provide
the motion vector, which is reasonable as it contributes more pixel
radiance.

Figure 8 shows examples of camera animation and volumetric
deformation with and without temporal reprojection. Notice that
temporal reprojection can help reduce the noise substantially.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

278:10 « Lin, Wyman, and Yuksel

Moderate Camera Motion

Reference Difference x4

Ours (averaged)

Moderate Volume Deformation

Ours (averaged) Reference Difference x4

Fast Camera Motion

Reference Difference x4

Ours (averaged) Reference Difference x4

Fig. 9. Bias in temporal reuse with (top) camera motion and (bottom) volume deformation, comparing the results of our method averaged over 256
recomputations of the same frame (to produce nearly-converged images) to reference images. (Left) with moderate motion/deformation bias is
imperceptible, but (right) faster camera motion or larger volume deformation increases this bias. Note that we use a slowly deforming fog as the
example for moderate volume deformation, which is different from other images. The full images on the left are rendered with motion blur to
illustrate the magnitude of the camera motion or volume deformation. The insets do not include motion blur.

An important limitation of this temporal reuse and reprojection
is it remains unbiased only for static volumes and camera. Under
camera motion or volume deformation, the chosen temporal reser-
voir depends on z; (i.e. the first scatter event). This turns the target
PDFs in RIS into conditional PDFs (conditioned on z1), introducing
a slight bias during reuse if treated as a marginalized PDF.

Bias increases with larger camera motion or volume deformation
(see Figure 9). But the bias is generally hard to perceive. Figure 9
shows examples with fast camera motion and large volume defor-
mation, but only slight darkening/brightening happens. Lowering
Q, the temporal limiting factor (see Section 2.5), reduces bias, and
the bias disappears entirely a few frames after motion ends.

Note that dynamic lighting does not add bias. Instead, sudden
lighting changes effectively lower the PDF for temporal candidates,
increasing variance near lighting discontinuities.

5 IMPLEMENTATION DETAILS

The above volumetric sampling techniques can be implemented in
various ways. In this section, we provide the details of our prototype.

Our implementation has four passes, similar to the flow in Figure 2.
First, we generate initial candidate paths for each pixel and pick
one, via RIS, to share with neighbors. Second, we reproject to find a
temporal neighbor for reuse and again resample. Third, we perform
spatial resampling. Finally, we evaluate the selected path sample
for shading. We visualize our pipeline in Figure 5, and provide
pseudocode in the supplemental document. Our reservoir stores
full paths as a list of (z;, w;) tuples. Memory costs are bounded by
the allowed number of scattering events, K. But supporting infinite
bounces is possible by switching to vertex reuse after a few bounces
and caching incident radiance of the remaining path.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

(a) Analytical (b) Mip 1 RM

140 ms/MSE: 0.0035 49 ms/MSE: 0.0050 43 ms/MSE: 0.0096

(c) Mip 3RM

Fig. 10. When resampling, approximating transmittance by ray
marching though coarser volumes (Mip 1 RM) greatly lowers cost,
in exchange for a little noise (compared to analytical transmittance).
But lowering resolution too far (e.g., Mip 3) adds more noise without
much speedup.

5.1 Optimizing Transmittance Computation

Transmittance plays a vital role in volumetric resampling, as it
contributes significant cost to target function p and must be eval-
uated between every two path vertices. Prior work [Bitterli et al.
2020] notes resampling efficiency is maximized when choosing a
target function p that closely approximates integrand f but is much
cheaper to evaluate.

When computing transmittance T in j for spatiotemporal reuse,
we ray march a coarser volume (i.e. Mip 1, the original volume
downsampled by half). Our step size for ray marching is the diagonal
of a Mip 1 voxel. We lossily compress the downsampled volume with
DirectX’s BC4 block compression format, which compresses density
values to 4 bits, giving a total 64:1 compression from the original;
this greatly reduces sampling bandwidth, improving performance.

Directly rendering such volumes causes overblurring, but we use
it just for importance sampling. Figure 10 compares ray marching
our downsampled volume with analytical transmittance compu-
tations in the original volume. The downsampled volume slightly

(c) No Shadow
Rl ” 83 ms/MSE: 0.0041 62 ms/MSE: 0.0041 55 ms/MSE: 0.0048

(@Mip1RM (b) Mip 2 RM
Fig. 11. As Bitterli et al. [2020] found, injecting higher fidelity visi-
bility incrementally during resampling improves quality without the
cost to compute it everywhere. Using (c) no transmittance for NEE
segments increases noise due to poorer sample quality. Adding trans-
mittance reduces noise, but (b) even very crude approximations (e.g.,
ray marching a 1/4° sized volume) provide most of the benefits.

(a) Analytical (b) Mip 1+2 RT (c) Mip 3 RT
111 ms/MSE: 0.0047 49 ms/MSE: 0.0050 44 ms/MSE: 0.0060

Fig. 12. During candidate path generation, computing transmittance
analytically is costly. We use regular tracking (RT) through coarser
volumes to reduce cost with little impact to sample quality (using Mip
1 for primary and Mip 2 for indirect rays). Coarsening too far (e.g.,
Mip 3) noticeably reduces quality without much performance win.

reduces sampling quality, but significantly improves performance.
But coarsening can go too far; Figure 10c uses a Mip 3 volume for
importance sampling. While cost drops further, sampling quality
decreases significantly.

However, Figure 11 shows initial candidate paths can ray march
a Mip 2 volume to estimate the transmittance on NEE segments
(i.e. for volumetric shadows) without affecting sampling quality.
This shows the benefit of incrementally injecting higher quality
transmittance into target function p over multiple rounds of RIS,
rather than always using the highest quality.

We also sample distances from downsampled volumes when gen-
erating initial path candidates. Figure 12 shows that mixing Mip 1
for sampling primary path segments and Mip 2 volume for indirect
path segments yields similar quality as analytical regular tracking
in the original volume, but with much higher performance. Again,
coarsening too far significantly skews the sampling distribution,
reducing quality (see Figure 12c).

In the integrand F, we analytically compute transmittance T
by traversing the voxels using piecewise-trilinear regular tracking
[Szirmay-Kalos et al. 2011], giving a closed-form, unbiased trans-
mittance. This traversal is expensive, fetching 8 density values per
step to evaluate a cubic polynomial. However, we only do this for
one path—the one selected for final shading. Should such a closed
form solution be infeasible, we can switch to ratio tracking [Novak
et al. 2014] for this final transmittance estimate; a large majorant
should be used to minimize noise by forcing a smaller average step.

Fast Volume Rendering with Spatiotemporal Reservoir Resampling « 278:11

(a) No Velocity
Resampling

(b) Velocity
Resampling

(c) Reference

Fig. 13. Temporal reprojection with and without velocity resampling,
shown for a dynamic camera. (a) Overusing background motion along
silhouettes causes brightening bias around the edge. (b) Velocity re-
sampling fixes this.

5.2 Velocity Resampling

Our temporal reprojection (Section 4.4) uses the motion vector of
vertex x1 on each pixel’s selected path Ag4. Generally this works
well, but near volume silhouettes, Aq may not have vertices in the
media, placing x; on the background. This often moves differently
than the volume, giving a halo along edges (see Figure 13).

We address this with velocity resampling. For any x1 not in the
volume, we generate a new distance z corresponding to a parti-
cle in the volume proportional to the free flight distance p(z) =
01 (x])T(xo < x]) with x| = x¢ + zw, and use the motion vector
for this sample. As z must be sampled in the volume, p(z) is unnor-
malized. We approximate distribution p(z) by assigning each voxel a
weight proportional to its average p(z), importance sampling along
the ray, and uniformly picking a point within the selected voxel.

This approach increases the probability of picking a point in the
media, providing better temporal reprojection. This reduces noise
and bias from suboptimal reprojections, as temporal reservoirs are
more likely to provide relevant paths that reduce variance during
reuse.

5.3 Parameters of Spatiotemporal Reuse

Resampling has various parameters impacting quality and perfor-
mance. First, we use M = 4 random walks to generate initial candi-
dates. In scattering paths, this produces fewer light samples than
the 32 light samples used by Bitterli et al. [2020], but our path gener-
ation is more expensive, so we trade fewer initial samples for more
spatiotemporal reuse, which maximizes the sampling efficiency in a
given budget.

We typically use Q = 4 as the temporal limiting factor, control-
ling the maximum prior frame contribution. Larger Q accumulates
more samples, but increases the chance of reusing stale temporal
reservoirs, which can cause fireflies under large lighting changes
(see Figure 14c).

However, in scenes combining volumes and surfaces under com-
plex illumination, we use larger Q to accumulate more effective
samples to reduce noise. The value chosen depends on which issue
is more problematic. In scenes containing surfaces, we use Q = 10.

During spatial reuse, we use a low-discrepancy sequence to sam-
ple 3 random neighbors within a 10 pixel radius. This achieves a bal-
ance between correlation artifacts and error, as shown in Figure 15.
We use direction reuse by default.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

278:12 « Lin, Wyman, and Yuksel

(b) Q-4 () Q=20

MSE: 0.0020 MSE: 0.0021

Fig. 14. The temporal limiting factor Q controls reuse behavior. With
Q =1, temporal samples get low relative weight. With Q =20, older
frames have more aggregate impact; this reduces overall noise, but very
old stale samples can get disproportionally weighted under quickly
changing illumination, causing fireflies. We use Q=4.

@Q=1
MSE: 0.0027

(a) 3 pixels (b) 10 pixels (c) 30 pixels
MSE: 0.0012 MSE: 0.0015 MSE: 0.0027
Fig. 15. Comparing spatial reuse over different radii. A smaller radius
reduces MSE, but correlation between nearby pixels becomes visually
apparent. Increasing the radius reduces visual correlation, but also
increases error. We use a 10 pixel radius, balancing these considerations.

6 RESULTS

We built our algorithm in the Falcor real-time rendering framework
[Benty et al. 2020] using GVDB [Hoetzlein 2016] to load and ac-
cess VDB assets [Museth 2013]. We captured results on an NVIDIA
GeForce RTX 3090. Performance numbers include initial candidate
generation, spatiotemporal reuse, and final shading. Scenes with
surfaces use inline ray tracing to allow handling the surface visibility
together with volumes in one compute shader.

We report error metrics and timing for 1920 X 1080 images, aver-
aging over 256 frames (after a warmup) to smooth variations. We
use HDR light probes and polygonal scenes with many emissive
triangles to create realistic lighting environments.

Unless noted, all figures show static scenes and cameras and
are fully unbiased. We do not leverage this to simplify, cancel, or
otherwise reduce computation; thus, the timings are equivalent
under animation. We show scenes with dynamic cameras, volumes,
and lighting in the supplemental video.

We compare our results with a fast implementation of decompo-
sition tracking [Kutz et al. 2017] (to sample free flight distances)
and residual ratio tracking [Novak et al. 2014] (for estimating trans-
mittance in NEE). We call this our baseline. Both decomposition and
residual ratio tracking use super-voxels [Szirmay-Kalos et al. 2011]
with 8x the original voxel size to store local minimum, maximum,
and average density values; these control volume densities as de-
scribed by Novéak et al. [2014] and Kutz et al. [2017]. For GVDB, we
use 8x8x8 voxel bricks [Hoetzlein 2016]. This enables storing super-
voxel density bounds in brick headers, allowing efficient fetches
during VDB traversal. This maximizes our baseline’s performance.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

Our video includes examples using the NVIDIA OptiX 7.3 tempo-
ral denoiser [NVIDIA 2017], though recent work [Hofmann et al.
2021] may provide even better denoising quality. Denoised compar-
isons can be found in our supplemental document and video.

6.1 Single and Multiple Scattering Results

We show our method in six scenes: the Bunny Cloud in two lighting
configurations (Figures 1 and 16), the Disney Cloud (Figure 16), an
Explosion (Figure 17), an animated Plume (Figure 17), the Amazon
Bistro with a smoke plume (Figure 18), and the Emerald Square with
fog (Figure 18). These cover various uses: emissive lights, complex
environment lighting, volume self-emission, dynamic media, and
volume-surface interactions. We use isotropic scattering (g = 0), un-
less otherwise stated. In all cases, our method significantly improves
over the optimized baseline.

In real-time contexts, K provides an important performance knob,
defining the allowable scattering events. Due to costs in dense voxel
grids (e.g., the bunny), we limit evaluation in most scenes to K = 3.
For K > 3, we apply Russian roulette after x3 to stochastically
terminate a random walk according to the albedo of the scattering
point. We do the same for terminating paths with the baseline. To
produce equal-time comparison, we choose the number of samples
per pixel (spp) for the baseline method to make the render time
match our method. With each sample, the baseline method performs
a random walk up to K scattering events and it performs NEE at
each bounce, just like our initial path candidate generation. Note
we only evaluate 1 spp per frame, in a Monte Carlo sense, but we
generate and reuse many samples as part of importance sampling.

Figures 16 and 17-top explicitly compare performance and quality
in three scenes with environment lighting using varying number
of maximum scattering events (K = 1, 3, and 7). We sample the
environment proportional to texel intensity. In all cases, our ap-
proach significantly reduces error compared to equal-time baseline
renderings.

In the Explosion scene with K = 2 and K = 4 scattering events, our
method significantly reduces the emission sampling noise compared
to the baseline. This provides better scattering quality (emissive
voxels lighting other parts of the volume) as well.

For the Plume scene in Figure 17, our method significantly out-
performs the baseline with both single scattering and multiple scat-
tering up to 7.

We show results of volume single scattering from light sources
and surface direct lighting in the Bistro with over 20k emissive tri-
angles and Emerald Square with around 90k emissives (Figure 18),
our work enables volumes to benefit from RIS and ReSTIR, simi-
lar to surfaces [Bitterli et al. 2020]. Here, the baseline uses a light
BVH [Moreau et al. 2019] for light sampling, while our method sam-
ples sources proportional to power. We show results with multiple
scattering and multiple-bounce surface-volume interreflection in
Figure 1. Note that this significantly increases render time, espe-
cially using multiple scattering. Profiler results reveal this stems
from thread divergence between ray tracing and volume tracking.

In all scenes, our method gives lower MSE than the baseline with
approximately equal or less time.

Fast Volume Rendering with Spatiotemporal Reservoir Resampling « 278:13

Bunny Cloud (1 bounce) (3 bounces)
] . = 3 ” N 3) T

Baseline Ours Reference Baseline Ours Reference

‘% MSE: 0.0026 . .] " MSE:0.0041

Time:37.3/ms

Disney Cloud (3 bounces)

Baseline Reference Baseline Reference

MSE:,0.00:

Fig. 16. The Bunny Cloud and Disney Cloud scenes, with roughly equal-time comparisons between the baseline and our method.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

278:14 « Lin, Wyman, and Yuksel

Plume (1 bounce)

Reference

Baseline

MSE:{0.0015

Time: 13.0 Time: 130,

Explosion (2 bounces)

Reference

Baseline Ours

Plume (7 bounces)

Baseline Ours Reference

MSE:{0!0026}

-(4 bounces)

Explosion

Reference

Baseline Ours

Fig. 17. The Plume and Explosion scenes, with roughly equal-time comparisons between the baseline and our method.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

Bistro (1 bounce)

Reference

Baseline Ours

MSE: 0.0158

- 'MSE: 0.0189.

Time: 44.7 ms. = Time: 47.4 ms

Fast Volume Rendering with Spatiotemporal Reservoir Resampling « 278:15

Emerald Square (1 bounce)

Reference

Baseline Ours

 MSE: 0.0309 MSE: 0.0201

“ Time: 72.1 ms

Fig. 18. The Bistro and Emerald Square scenes, with roughly equal-time comparisons to the baseline.

6.2 Participating Media with Different Densities

Our algorithm estimates transmittance using ray marching. Since
path segments are longer in low density volumes, our algorithm
accesses more data for the same model size.

In Figure 19, we scale the density of the Disney Cloud to 0.2x and
3% of the original for comparison. Our method’s cost grows 47% from
83.8 ms to 123.1 ms. In comparison, the baseline method requires
less time per sample, as decomposition tracking and residual ratio
tracking take larger average flight distances between null collisions
(due to smaller majorant).

At the lowest density, our method has slightly higher MSE than
the baseline. Looking closely shows this is caused by color noise, a
limitation of ReSTIR [Bitterli et al. 2020] caused by using the same
scalar PDF to importance sample all color channels. We still achieve
lower MSE for monochromatic images. At low densities, more back-
ground samples are produced. When the background color differs
strongly from the scattered light, color noise is amplified. This is
not bias; aggregating more frames reduces color noise (Figure 20)
and converges to the reference. Note that increasing the initial can-
didate count M does not reducing color noise, as they all contribute
our scalar target PDF, producing one integrand f whose chroma is
randomized.

Conversely, increasing media density speeds our algorithm and
makes each baseline sample more expensive. Note that we still have

color noise, but its influence is smaller than the remaining variance
in the overall integral.

6.3 Participating Media with High Anisotropy

To validate robustness with highly anisotropic phase functions, we
change the Henyey-Greenstein asymmetry parameter g to 0.8 in the
Bunny Cloud, causing strong forward-scattering (Figure 21 top). Our
baseline, using only NEE, is outperformed by null scattering [Miller
et al. 2019], which combines residual ratio tracking in NEE with the
radiance of escaped ray (from free-flight sampling) using MIS; this is
infeasible without null scattering. But our method still outperforms
null scattering, despite only using NEE for light samples.

But null scattering does not always outperform decomposition
tracking. For an isotropic phase function (g = 0) and complex light-
ing (Figure 21 bottom), the MIS in null scattering may not yield
better quality and it adds cost to each sample. As null scattering gen-
erates fewer samples per pixel than our baseline for equal time, the
sampling efficiency becomes lower. Here our method significantly
outperforms both methods, despite having some color noise.

Note we could use MIS to sample candidate lights using the MIS
weights for RIS [Talbot 2005]. Since our initial path generation
operates with closed-form PDFs, we do not rely on the null scattering
formulation to compute MIS weights. However, this adds overhead
to candidate generation. To discover when MIS is most effective
requires further investigation.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

278:16 « Lin, Wyman, and Yuksel

Low Density (0.2x default)

Moderate Density (default)

High Density (3x default)

Baseline Ours Reference Baseline

130.8 ms (14 spp) 123.1 ms

MSE: 0.0098

MSE: 0.0089

SE: 0) 09

85.9 ms (7 spp) 83.8 ms

MSE: 0.0049

MSE: 0.0024

Baseline Reference

84.5 ms (4 spp)

Reference

MSE: 0.0196 MSE: 0.0082

MSE: 0.0059

MSE: 0.0181

Fig. 19. Comparing our method and the baseline in the same volume with different density multipliers. Notice that lower density makes the
execution time of our method longer, while it reduces the time for each sample of baseline. We provide both color and monochromatic images to
show the impact of color noise. Images shown with 3-bounce multiple scattering.

(a)1 frame (b) 4 frames () 16 frames (d) Reference

Fig. 20. Color noise decreases when accumulating multiple frames.

6.4 Longer Time Convergence

To compare how error evolves with time, we accumulate frames
of both our method and baseline, comparing errors from 100 ms to
10 seconds (Figure 22). The Bunny Cloud, Explosion, and Emerald
Square scenes are selected as representative of high albedo scatter-
ing, emissive volumes, and mixed scenes with complex lighting.

The plots show our method consistently produces less error than
the baseline. Note that allowing more scattering events slows con-
vergence in both methods. Scenes mixing volumes and surfaces
under complex lighting are also more challenging. The general ob-
servation is that while producing lower error than the baseline, our
longer term convergence speed slows down for multiple scattering
and complex surface scenes. Interestingly, our long term conver-
gence still shows clear advantage over the baseline for emissive
volumes with multiple scattering. Overall, our method is superior
in 1-10s time range, suggesting our approach may be applicable to
previsualization for offline rendering.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

7 CONCLUSION

We introduced a sampling solution extending resampled importance
sampling [Talbot 2005] and ReSTIR [Bitterli et al. 2020] to path space,
enabling real-time rendering of heterogeneous volumes in complex
lighting environments. Resampling exposes new user-defined target
PDFs in each reuse step. By adjusting these target PDFs, even with
biased or approximate distributions, we can dramatically improve
the distribution quality used to select our final pixel samples.

Beyond the prior resampling work, our approach extends resam-
pling to multi-bounce paths on surfaces and in volumes, mixes path
samples of varying lengths, and shows how transmittance estimates
of increasing fidelity can be injected over multiple resampling steps.
We jointly sample multiple dimensions during resampling; free-
flight distances and scattering directions are mixed together, unlike
prior work [Bitterli et al. 2020] that exclusively considers directions.
We demonstrate an efficient GPU implementation that outperforms
state-of-the-art.

Our work inherits some limitations of prior resampling [Bitterli
et al. 2020] techniques. For instance, we exploit coherence between
samples and perform poorly where no coherence exists. Specifically,
high frequency variations (e.g., of lighting, density, motion) limit
coherence across boundaries, increasing nearby variance.

Additionally, our work uses scalar target functions. This samples
chroma channels identically, leaving color noise (e.g., Figure 19).
Such noise is usually minor, except in scenes with different, highly-
saturated lights. Using separate target functions per channel avoids
this issue, but at substantial cost. Exploring efficient sampling to
reduce color noise is interesting future work.

Baseline

'MSE: 0.0093
Time: 99.6 ms

Null Scattering

“ MSE: 0.0078

Fast Volume Rendering with Spatiotemporal Reservoir Resampling « 278:17

Ours Reference

~ MSE:0.0057
Time: 96.2 ms

MSE:[{0.0091
‘Time:!82/4'ms

Fig. 21. Comparing our baseline (Kutz et al. [2017] plus Novak et al. [2014]), a null scattering integration [Miller et al. 2019], and our method on a
(top) highly anisotropic Bunny Cloud (Henyey-Greenstein scattering coefficient g = 0.8). (Bottom) For comparison, we show an isotropic Bunny
Cloud under identical lighting. Images shown with 3-bounce multiple scattering.

Bunny Cloud (1 bunce) Bunny Cloud (3 bounces)

Explosion (2 bounces)

Explosion (4 bounces) Emerald Square (1 bounce)

20

1072
1072
1072

1072

/

S

MSE
1073

MSE
1073

2 N 7 7
m = \ wm = ==
w 122} w
= \ = =
5 | t 5 5 L
10? 10° 10* 10% 10° 10* 10? 10° 101 10? 10° 10* 10% 10% 10*
Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)

Fig. 22. Comparing convergence between the baseline and our algorithm using log-log plots showing MSE vs. render time from 0 to 10 seconds.

For sampling emission, a line integral which effectively combines
our method with the FNEE method [Simon et al. 2017] may more
efficiently collect radiance.

Another issue is the relative high cost for initial candidates and
target function evaluation inside media, compared to Bitterli et al.
[2020]. Coarse volumes reduce cost at the expense of quality, less
accurately approximating target functions. Future work may explore
adaptive representations or ray marching to speed computations
while minimizing quality loss. Such improvements will accelerate
our work, enabling fast, many-bounce global lighting in the presence
of complex lighting, volumes, and surfaces.

As in most modern real-time renderers, our volume rendering
system provides input to a denoiser. But spatiotemporal reuse can
introduce correlations in the noise, a characteristic not handled
well by existing denoisers (e.g., in OptiX [NVIDIA 2017]). Finding
additional ways to decorrelate the noise or better adapt the denoiser
are interesting future directions.

REFERENCES

Philippe Bekaert, Mateu Sbert, and John H Halton. 2002. Accelerating Path Tracing by
Re-Using Paths. In Rendering Techniques. 125-134.

Nir Benty, Kai-Hwa Yao, Petrik Clarberg, Lucy Chen, Simon Kallweit, Tim Foley,
Matthew Oakes, Conor Lavelle, and Chris Wyman. 2020. The Falcor Rendering
Framework. https://github.com/NVIDIAGameWorks/Falcor

Benedikt Bitterli. 2021. Correlations and reuse for fast and accurate physically based
light transport. Ph.D. Dissertation. Dartmouth College.

Benedikt Bitterli and Wojciech Jarosz. 2017. Beyond points and beams: Higher-
dimensional photon samples for volumetric light transport. ACM Trans. Graph. 36,
4(2017), 1-12.

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech
Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with
dynamic direct lighting. ACM Trans. Graph. 39, 4 (2020), 148:1-148:17.

Jakub Boksansky, Paula Jukarainen, and Chris Wyman. 2021. Rendering Many Lights
with Grid-Based Reservoirs. In Ray Tracing Gems I Springer, 351-365.

Min-Te Chao. 1982. A general purpose unequal probability sampling plan. Biometrika
69, 3 (1982), 653-656.

Cyril Delalandre, Pascal Gautron, Jean-Eudes Marvie, and Guillaume Francois. 2011.
Transmittance function mapping. In Symposium on Interactive 3D Graphics and
Games. 31-38.

Xi Deng, Shaojie Jiao, Benedikt Bitterli, and Wojciech Jarosz. 2019. Photon surfaces for
robust, unbiased volumetric density estimation. ACM Trans. Graph. 38, 4 (2019), 46.

Eugene d’Eon and Jan Novak. 2021. Zero-variance Transmittance Estimation. In Euro-
graphics Symposium on Rendering - DL-only Track.

Mathieu Galtier, Stephane Blanco, Cyril Caliot, Christophe Coustet, Jérémi Dauchet,
Mouna El Hafi, Vincent Eymet, Richard Fournier, Jacques Gautrais, Anais Khuong,
et al. 2013. Integral formulation of null-collision Monte Carlo algorithms. Journal
of Quantitative Spectroscopy and Radiative Transfer 125 (2013), 57-68.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

https://github.com/NVIDIAGameWorks/Falcor

278:18 « Lin, Wyman, and Yuksel

Pascal Gautron, Cyril Delalandre, Jean-Eudes Marvie, and Pascal Lecocq. 2013.
Boundary-aware extinction mapping. Computer Graphics Forum 32, 7 (2013), 305
314.

Iliyan Georgiev, Jaroslav Krivanek, Toshiya Hachisuka, Derek Nowrouzezahrai, and
Wojciech Jarosz. 2013. Joint importance sampling of low-order volumetric scattering.
ACM Trans. Graph. 32, 6 (2013), 164-1.

Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav
Kfivanek, and Wojciech Jarosz. 2019. Integral formulations of volumetric transmit-
tance. ACM Trans. Graph. 38, 6 (2019), 1-17.

Adrien Gruson, Binh-Son Hua, Nicolas Vibert, Derek Nowrouzezahrai, and Toshiya
Hachisuka. 2018. Gradient-domain volumetric photon density estimation. ACM
Trans. Graph. 37, 4 (2018), 1-13.

Louis G Henyey and Jesse L Greenstein. 1941. Diffuse radiation in the galaxy. Astro-
physical Journal 93 (1941), 70-83. https://doi.org/10.1086/144246

Sebastian Herholz, Yangyang Zhao, Oskar Elek, Derek Nowrouzezahrai, Hendrik PA
Lensch, and Jaroslav Kfivanek. 2019. Volume path guiding based on zero-variance
random walk theory. ACM Trans. Graph. 38, 3 (2019), 1-19.

Sébastien Hillaire. 2015. Physically-based and Unified Volumetric Rendering in Frostbite.
In SIGGRAPH Courses: Advances in Real-Time Rendering in Games.

Rama Karl Hoetzlein. 2016. GVDB: Raytracing Sparse Voxel Database Structures on
the GPU. In High Performance Graphics. 109-117.

Nikolai Hofmann, Jon Hasselgren, Petrik Clarberg, and Jacob Munkberg. 2021. Interac-
tive Path Tracing and Reconstruction of Sparse Volumes. Proc. ACM Comput. Graph.
Interact. Tech. 4, 1, Article 5 (April 2021), 19 pages.

Jon Jansen and Louis Bavoil. 2010. Fourier opacity mapping. In Proceedings of the 2010
ACM SIGGRAPH symposium on Interactive 3D Graphics and Games. 165-172.

Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011.
A comprehensive theory of volumetric radiance estimation using photon points and
beams. ACM Trans. Graph. 30, 1 (2011), 1-19.

Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. 2008. The beam radiance
estimate for volumetric photon mapping. In ACM SIGGRAPH 2008 classes. 1-112.

Henrik Wann Jensen and Per H Christensen. 1998. Efficient simulation of light transport
in scenes with participating media using photon maps. In Proceedings of the 25th
annual conference on Computer graphics and interactive techniques. 311-320.

Anton Kaplanyan and Carsten Dachsbacher. 2010. Cascaded Light Propagation Volumes
for Real-Time Indirect Illumination. In Proceedings of the 2010 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games. 99-107.

Markus Kettunen, Eugene D’Eon, Jacopo Pantaleoni, and Jan Novak. 2021. An Unbiased
Ray-Marching Transmittance Estimator. ACM Trans. Graph. 40, 4, Article 137 (July
2021), 20 pages.

Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and
Matthias Zwicker. 2015. Gradient-Domain Path Tracing. ACM Trans. Graph. 34, 4,
Article 123 (July 2015), 13 pages.

Emmett Kilgariff, Henry Moreton, Nick Stam, and Brandon Bell. 2018. NVIDIA
Turing Architecture In-Depth. https://developer.nvidia.com/blog/nvidia-turing-
architecture-in-depth/. [Online; accessed 19-January-2021].

Tae-Yong Kim and Ulrich Neumann. 2001. Opacity shadow maps. In Rendering Tech-
niques 2001. Springer, 177-182.

Jaroslav K¥ivanek and Eugene d’Eon. 2014. A zero-variance-based sampling scheme
for Monte Carlo subsurface scattering. In ACM SIGGRAPH 2014 Talks. 1-1.

Jaroslav Kivanek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Sik, Derek
Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in
volumetric light transport simulation. ACM Trans. Graph. 33, 4 (2014), 1-13.

Christopher Kulla and Marcos Fajardo. 2012. Importance sampling techniques for path
tracing in participating media. Computer graphics forum 31, 4 (2012), 1519-1528.

Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novak. 2017. Spectral and decomposition
tracking for rendering heterogeneous volumes. ACM Trans. Graph. 36, 4 (2017),
1-16.

Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo
Aila. 2013. Gradient-Domain Metropolis Light Transport. 32, 4, Article 95 (July
2013), 12 pages.

Zander Majercik, Jean-Philippe Guertin, Derek Nowrouzezahrai, and Morgan McGuire.
2019. Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Fields.
Journal of Computer Graphics Techniques (JCGT) 8, 2 (5 June 2019), 1-30.

Johannes Meng, Johannes Hanika, and Carsten Dachsbacher. 2016. Improving the
Dwivedi sampling scheme. Computer Graphics Forum 35, 4 (2016), 37-44.

Bailey Miller, Iliyan Georgiev, and Wojciech Jarosz. 2019. A null-scattering path integral
formulation of light transport. ACM Trans. Graph. 38, 4 (2019), 1-13.

Pierre Moreau, Matt Pharr, Petrik Clarberg, M Steinberger, and T Foley. 2019. Dynamic
Many-Light Sampling for Real-Time Ray Tracing. In High Performance Graphics
(Short Papers). 21-26.

Ken Museth. 2013. VDB: High-Resolution Sparse Volumes with Dynamic Topology.
ACM Trans. Graph. 32, 3, Article 27 (2013), 22 pages.

Jan Novak, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012a.
Progressive virtual beam lights. Computer Graphics Forum 31, 4 (2012), 1407-1413.

ACM Trans. Graph., Vol. 40, No. 6, Article 278. Publication date: December 2021.

Jan Novék, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012b.
Virtual ray lights for rendering scenes with participating media. ACM Trans. Graph.
31,4 (2012), 1-11.

Jan Novak, Andrew Selle, and Wojciech Jarosz. 2014. Residual ratio tracking for
estimating attenuation in participating media. ACM Trans. Graph. 33, 6 (2014),
179-1.

Jan Novak, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte
Carlo methods for volumetric light transport simulation. Computer Graphics Forum
(Proceedings of Eurographics - State of the Art Reports) 37, 2 (May 2018).

NVIDIA. 2017. NVIDIA® OptiX™ AlI-Accelerated Denoiser. https://developernvidia.
com/optix-denoiser

Yaobin Ouyang, Shigiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni. 2021.
ReSTIR GI: Path Resampling for Real-Time Path Tracing. Computer Graphics Forum
(2021).

Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased global illumination
with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006.
Springer, 591-605.

Marco Salvi, Kiril Vidim¢e, Andrew Lauritzen, and Aaron Lefohn. 2010. Adaptive
volumetric shadow maps. Computer Graphics Forum 29, 4 (2010), 1289-1296.

Florian Simon, Johannes Hanika, Tobias Zirr, and Carsten Dachsbacher. 2017. Line
Integration for Rendering Heterogeneous Emissive Volumes. Computer Graphics
Forum 36 (July 2017), 101-110.

TM Sutton, FB Brown, FG Bischoff, DB MacMillan, CL Ellis, JT Ward, CT Ballinger, DJ
Kelly, and L Schindler. 1999. The physical models and statistical procedures used in
the RACER Monte Carlo code. Technical Report. Knolls Atomic Power Lab.

Laszlé Szirmay-Kalos, Iliyan Georgiev, Milan Magdics, Balazs Molnar, and David
Legrady. 2017. Unbiased Light Transport Estimators for Inhomogeneous Participat-
ing Media. Computer Graphics Forum 36 (May 2017), 9-19.

Laszl6 Szirmay-Kalos, Balazs Toth, and Milan Magdics. 2011. Free Path Sampling in
High Resolution Inhomogeneous Participating Media. Computer Graphics Forum 30
(March 2011), 85-97.

Justin Talbot, David Cline, and Parris Egbert. 2005. Importance Resampling for Global
Ilumination. In Eurographics Symposium on Rendering. 139-146.

Justin F Talbot. 2005. Importance resampling for global illumination. Master’s thesis.
Brigham Young University.

Jifi Vorba, Johannes Hanika, Sebastian Herholz, Thomas Miiller, Jaroslav Kfivanek,
and Alexander Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH 2019
Courses (Los Angeles, California). ACM, New York, NY, USA, Article 18, 77 pages.

E Woodcock, T Murphy, P Hemmings, and S Longworth. 1965. Techniques used in the
GEM code for Monte Carlo neutronics calculations in reactors and other systems
of complex geometry. In Proc. Conf. Applications of Computing Methods to Reactor
Problems, Vol. 557.

Chris Wyman. 2016. Exploring and Expanding the Continuum of OIT Algorithms. In
High Performance Graphics. 1-11.

Chris Wyman and Alexey Panteleev. 2021. Rearchitecting Spatiotemporal Resampling
for Production. In High-Performance Graphics - Symposium Papers.

Yonghao Yue, Kei Iwasaki, B. Chen, Y. Dobashi, and T. Nishita. 2011. Toward Optimal
Space Partitioning for Unbiased, Adaptive Free Path Sampling of Inhomogeneous
Participating Media. Computer Graphics Forum 30 (2011).

Cem Yuksel and John Keyser. 2008. Deep Opacity Maps. Computer Graphics Forum
(Proceedings of EUROGRAPHICS 2008) 27, 2 (2008), 675-680.

https://doi.org/10.1086/144246
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/optix-denoiser
https://developer.nvidia.com/optix-denoiser

	Abstract
	1 Introduction
	2 Background
	2.1 Monte Carlo Sampling for Volume Rendering
	2.2 Bidirectional Volume Rendering
	2.3 Path Reuse
	2.4 Resampled Importance Sampling (RIS)
	2.5 Spatiotemporal Reservoir Resampling (ReSTIR)

	3 RIS for Volume Rendering
	3.1 Path Integral Representation of Volume Rendering
	3.2 Generating Path Samples
	3.3 RIS Estimation of Volume Rendering

	4 Spatiotemporal Reuse
	4.1 Generating Candidate Samples for Reuse
	4.2 Path Reuse
	4.3 Spatial Reuse
	4.4 Temporal Reuse

	5 Implementation Details
	5.1 Optimizing Transmittance Computation
	5.2 Velocity Resampling
	5.3 Parameters of Spatiotemporal Reuse

	6 Results
	6.1 Single and Multiple Scattering Results
	6.2 Participating Media with Different Densities
	6.3 Participating Media with High Anisotropy
	6.4 Longer Time Convergence

	7 Conclusion
	References

