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Fig. 1. Yangge dance. We propose a volumetric homogenization algorithm for knitwear simulation. Our pipeline takes full-scale yarn-level

simulation observations as input and learns a homogenization out of the input poses. We name this procedure volumetric-homogenization because

we do not homogenize yarn-level dynamics to a codimensional sheet/shell domain but to a volumetric enclosure. Doing so allows us to use an

intuitive hyperelastic material model with a volume-preserving constraint to capture nonlinear behaviors like bending and twisting. volumetric

homogenization varies spatially. Each volumetric element has its own material parameter, which substantially enhances the expressivity of our

model. This is a challenging problem, we utilize the adjoint Gauss-Newton method[Zehnder et al. 2021] to enhance the convergence of the adjoint

method. Additionally, we propose harmonic initialization, sample-based optimization, and a novel domain-decomposed projective dynamics solver,

which significantly accelerates the entire optimization process. In the teaser figure, we show snapshots of an animated virtual character performing

a Yangge dance, where we simulate a homogenized tetrahedron mesh with about 390K elements that encapsulate a sweater. Cable patterns on

the garment contribute to an irregular and sophisticated material distribution (as visualized in the sub-figure). In this example, the mesh-level

simulation runs at 604 ms per frame on average under Δ𝑡 = 1/150 sec. The yarn-level sweater model, on the other hand, consists of over 3M DOFs.

Our volumetric homogenization makes the simulation ∼ 100× faster than simulating the sweater at the yarn level.
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This paper presents volumetric homogenization, a spatially varying ho-
mogenization scheme for knitwear simulation. We are motivated by the
observation that macro-scale fabric dynamics is strongly correlated with its
underlying knitting patterns. Therefore, homogenization towards a single
material is less effective when the knitting is complex and non-repetitive.
Our method tackles this challenge by homogenizing the yarn-level material
locally at volumetric elements. Assigning a virtual volume of a knitting struc-
ture enables us to model bending and twisting effects via a simple volume-
preserving penalty and thus effectively alleviates the material nonlinearity.
We employ an adjoint Gauss-Newton formulation[Zehnder et al. 2021] to bat-
tle the dimensionality challenge of such per-element material optimization.
This intuitive material model makes the forward simulation GPU-friendly.
To this end, our pipeline also equips a novel domain-decomposed subspace
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solver crafted for GPU projective dynamics, which makes our simulator
hundreds of times faster than the yarn-level simulator. Experiments validate
the capability and effectiveness of volumetric homogenization. Our method
produces realistic animations of knitwear matching the quality of full-scale
yarn-level simulations. It is also orders of magnitude faster than existing
homogenization techniques in both the training and simulation stages.

CCS Concepts: • Computing methodologies→ Simulation by animation;
Volumetric models.
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1 INTRODUCTION

Creating realistic garment animation is a core problem of com-
puter graphics. A common practice is to leverage a mass-spring
system [Liu et al. 2013; Provot 1995] or a triangle mesh [Baraff
and Witkin 1998] to simulate the cloth motion as a thin membrane.
The resultant cloth dynamics are controlled by a few macroscopic
(triangle-level) material parameters like bending and stretching
stiffness. On the other hand, knitwear like sweaters, scarves, and
cardigans that are fabricated by interlocking thick yarn threads
exhibit “non-rubbery” behaviors due to intricate yarn-level inter-
actions. The intriguing mechanical responses of knitted fabrics are
beyond the expressivity of an elastic sheet and require dedicated
algorithms to simulate microscopic dynamics, such as yarn-level
simulation (YLS) [Kaldor et al. 2008]. While YLS is able to produce
high-fidelity dynamics, it is also known to be computationally ex-
pensive as one needs a large number of degrees of freedom (DOFs)
to capture the motions and interactions of individual yarn threads.
Homogenized yarn-level cloth (HYLC) [Sperl et al. 2020] aims

to improve the YLS efficiency by regressing a nonlinear hypere-
lastic thin shell model based on quasi-static YLS responses so that
the triangle-level simulation reflects the dominant effects of the
knits. It is based on the classic theory of computational homogeniza-
tion [Geers et al. 2010] that uniform macro-scale material properties
can be extracted out of micro-scale structural variations. This applies
to the knit structure with relatively simple and periodic patterns, as
the inconsistency between macroscopic and microscopic motion is
believed to be averaged out. However, knit sweaters often feature
intricate patterns and complex yarn structures across their front
panels, and the spatial disparity makes the traditional homogeniza-
tion technique cumbersome. Moreover, determining the appropriate
size for the representative volume element (RVE) [De Souza Neto
et al. 2015; Liu and Reina 2016] is not straightforward in such cases.
Another limitation (maybe more as a natural consequence) of HYLC
is its reliance on a highly nonlinear material model to capture the
non-smooth yarn movements at micro scales, leading to potential
numerical instability, such as energy singularity and Hessians that
are not positive definite. Therefore, HYLC simulation uses a (very)
conservative time step size, resulting in more steps to compute,
which undermines its original purpose of computational efficiency.

Simply increasing the material complexity in the homogenization,
e.g., using spline-based strain-stress model [Sperl et al. 2020; Xu et al.
2015] or even neural-network-based materials [Feng et al. 2024],
is less helpful to capture the dynamics of complicated interlocked
yarn structure with large variations and often induce numerical
instability (e.g. see Wang et al. [2023]).

We propose an entirely different perspective for efficient simula-
tion of knits that can even handle non-repeating knitting patterns. In
contrast to traditional material homogenization methods or HYLC,
we introduce a novel approach: volumemetric homogenization. We
focus on studying the heterogeneity, i.e., the spatial variation of ma-
terial parameters while keeping the constitutional relation simple.
In particular, we incorporate a virtual volume representing the yarn
material and exploit spatially varying volume-preserving penalties
to capture desired knit characteristics, such as stretching, shearing,
and bending, without over-complicating the material model.
We discretize the fabric at the yarn level and embed it within

a volumetric mesh. This mesh is of high resolution to capture the
local structural characteristics of yarn loops. We learn a macro-
scale material model over this volumetric space, aligning it with
dynamic YLS results. In that respect, our method can also be un-
derstood as applying local homogenization at each mesh element.
Our rationale resembles curve fitting, where using multiple low-
degree polynomials (e.g., splines) is often preferred over employing
a single high-degree polynomial. Likewise, a composite material
model, despite its simplicity, offers a more versatile design space
compared to a homogenized material, since each volumetric ele-
ment possesses independent material freedoms. We employ the
adjoint Gauss-Newton method[Zehnder et al. 2021] to regress the
yarn material via a high-dimension space-time optimization prob-
lem. The simplicity of the material model makes the volumetric
homogenization well-suited for efficient forward GPU solvers such
as projective dynamics (PD) [Bouaziz et al. 2014]. To this end, we
devise a domain-decomposed multi-level solver for the global stage
of PD specially crafted for our runtime pipeline.

Although simulating over a volume mesh may appear expensive
initially, the aforementioned benefits outweigh the overhead of
mesh DOFs. As a result, our method is more stable, runs orders
of magnitude faster than existing homogenized YLS, and produces
realistic animations of knitwear with complex knit patterns.

2 RELATED WORK

There exists a large volume of excellent work on relevant topics of
cloth and yarn simulation. Due to the page count limits, this section
only briefly discusses some closely relevant prior work.

Sheet-level cloth model. Modern fabrics and garments are fab-
ricated through sophisticated workmanship and exhibit intricate
material response. Nevertheless, modeling cloth with a sheet-like
shell remains prevalent [Choi and Ko 2002; Grinspun et al. 2003]
due to its simplicity and intuitiveness. Mass-spring and/or triangle
meshes offer a natural discretization of sheet-based cloth, and its
equation of motion can be derived via elastic energies that measure
the cloth deformation [Terzopoulos et al. 1987]. Implicit integration
has become a standard component since the seminal work of Baraff
and Witkin [1998]. Unlike a rubber membrane, cloth fabrics are less
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stretchable but tend to be bent more easily. This feature inspires
various techniques to enforce the inextensibility [English and Brid-
son 2008; Goldenthal et al. 2007; Provot 1995; Wang et al. 2010]
with numerical stability. Cloth bending, on the other hand, can be
parameterized by the dihedral angle or bending modes [Bridson
et al. 2003]. It is also possible to exploit isometric mesh deforma-
tions to use the so-called quadratic bending [Bergou et al. 2006;
Garg et al. 2007], which possesses a constant Hessian. Kim [2020]
reveals the connection between model of Baraff and Witkin [1998]
and the finite element method (FEM) [Bathe 2006]. To capture de-
tailed wrinkles and folds on the cloth, adaptive remeshing [Narain
et al. 2013, 2012] or mixed discretization [Guo et al. 2018; Weidner
et al. 2018] are proven to be effective. Another important aspect
of sheet-level cloth animation is to handle collisions, especially
self-collisions [Baraff et al. 2003; Bridson et al. 2002; Volino and
Thalmann 2000]. Penalty-based methods [Bouaziz et al. 2014; Wu
et al. 2020] are straightforward to implement but often with stability
issues. Harmon et al. [2008]; Provot [1997] introduce approaches
that group multiple collisions into “impact zones” and treat them
as rigid bodies, allowing for some sliding motion. Constraint-based
collision handling methods represent contact as constraints based
on exact Coulomb friction [Li et al. 2018; Otaduy et al. 2009].

Yarn-level cloth model. The rapid development of computing hard-
ware makes animated yarn-level fabric feasible. YLS models each
yarn thread as an elastic rod [Bergou et al. 2010, 2008; Pai 2002;
Spillmann and Teschner 2007] and exploits yarn-yarn contact to
trigger fabric deformation. This effort is pioneered by Kaldor et al.
[2008], where yarn threads are modeled as cubic B-splines.With YLS,
different knit structures like garter, rib, and stockinette showcase
unique stretching behaviors, which are beyond the expressivity of
average sheet-level models. This approach is subsequently acceler-
ated by approximating yarn-yarn collisions using a co-rotated force
model [Kaldor et al. 2010]. Persistent contact [Cirio et al. 2014, 2015]
is an efficient method to handle the interaction among heavily inter-
laced yarns. This method is further combined with a triangle-based
model to create a hybrid system that enhances yarn-level details only
in areas of interest [Casafranca et al. 2020]. Additionally, Sánchez-
Banderas et al. [2020] extend the concept of persistent contact to
handle stacked fabrics, addressing both intra-fabric and inter-fabric
contacts implicitly. Computational design and machine fabrication
of yarn patterns are also of great interest to various communities.
Leaf et al. [2018] propose an efficient GPU yarn-level simulator to
enable the interactive designing of periodic yarn patches. Yuksel
et al. [2012] introduce an efficient 3D design and modeling interface
at the stitch level, which is later extended for hand knitting [Wu
et al. 2019], machine-knitting [Narayanan et al. 2019], and enforcing
wearability [Wu et al. 2021] via cloth simulation.

Data- and learning-based cloth model. Data-driven or learning-
based cloth simulation is considered an effective approach to en-
hance the realism of continuum shell models. Wang et al. [2011]
estimate planar and bending stiffness through separate tests, while
automatic devices have been developed for acquiring fabric stiff-
ness [Miguel et al. 2012] and friction parameters [Miguel et al. 2013].
Similar tensile tests have also been utilized by Clyde et al. [2017] to
estimate the planar stiffness of woven fabrics. Feng et al. [2022] use

a simulation-in-the-loop framework to estimate the fabric bending
stiffness. ClothCap aims to reconstruct multiple garments from the
3D scans [Pons-Moll et al. 2017]. Differentiable simulation tech-
niques [Li et al. 2022; Liang et al. 2019] become requisite for such
inverse problems. Prior arts are often designed for inverse problems
of a handful of parameters. They either become prohibitive or do not
converge when the inverse problem has a large number of unknown
variables to be optimized. Deep neural networks offer a powerful
modality for extracting knowledge from observations. They have
also been applied for garment and cloth animation. For instance,
Santesteban et al. [2019] show that deep nets can be exploited to
predict garment deformation based on physics-based simulation
results. PBNS [Bertiche et al. 2021] and SNUG [Santesteban et al.
2022] use unsupervised learning for the synthesis of garment defor-
mation. Bertiche et al. [2022] further generalizes this idea to learn
dynamic garment movements. However, existing methods mostly
focus on sheet-based models. A learning-based yarn-level model
remains under-explored. This is likely due to the lack of high-quality
training data and efficient simulation algorithms.

Numerical methods. An efficient forward simulation is often the
key ingredient of the inverse problem. As the bottleneck in cloth
simulation is often at solving the energy Hessian, a natural thought
is to avoid a full linear solve in classic Newton’s method. Follow-
ing this idea, Hecht et al. [2012] propose a lagged factorization
scheme that reuses existing Cholesky factorization to save the com-
putation. Multi-resolution [Capell et al. 2002; Lee et al. 2010] and
multigrid [Tamstorf et al. 2015; Wang et al. 2018] solvers project
fine-grid residual errors onto a coarser grid, on which linear or
nonlinear iterations are more effective [Bolz et al. 2003; Tamstorf
et al. 2015; Xian et al. 2019; Zhu et al. 2010]. Liu et al. [2013] treat
the implicit Euler integration as an energy minimization problem,
in which spring constraints can be solved in parallel in the local
step, while the global linear system remains constant on run-time.
Projective Dynamics (PD) [Bouaziz et al. 2014] extend this con-
cept to support a wider range of hyperelastic material models in
quadratic form. Additionally, the computation of integration has
been accelerated using methods such as the Chebyshev [Wang 2015;
Wang and Yang 2016], Gauss-Seidel [Fratarcangeli et al. 2016], and
various parallelization techniques on GPU [Fratarcangeli et al. 2016;
Wang and Yang 2016; Wu et al. 2020]. Fully leveraging the obtained
gradient to find a better search direction to improve convergence is
also essential for achieving better performance. A common strategy
involves estimating the second-order information of the system,
e.g. L-BFGS[Du et al. 2021; Li et al. 2022] or Anderson accelera-
tion[Peng et al. 2018]. Wang [2018] and Zimmermann et al. [2019]
propose using the Gauss-Newton solver, which exhibits promis-
ing convergence. However, assembling and factorizing the dense
Gauss-Newton solver becomes a new bottleneck. Similar to how the
adjoint method circumvents dense matrices, Zehnder et al. [2021]
introduces two additional adjoint variables that transform the Gauss-
Newton solver to be a sparse linear system, greatly accelerating the
performance.

Homogenization & coarsening. Our work is also closely related to
computational homogenization [Allaire and Brizzi 2005; Andreassen
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Fig. 2. Volumetric homogenization pipeline. Given an input rod-based yarn model, our pipeline generates a volume mesh encapsulating the

entire yarn structure. We lump the yarn-level mass to the mesh’s nodal points so that the inertia effect(Eq. 14) can be isolated. The yarn-to-mesh

and mesh-to-yarn shape fitting facilitates us to define the loss function for homogenization. Per-element material parameters are obtained via an

adjoint Gauss-Newton procedure, in a sample-by-sample manner. With a domain-decomposed PD solver, our method not only produces high-quality

animation of knitwear garments that is visually similar to the full-scale YLS result but also achieves these results two orders of magnitude faster.

and Andreasen 2014; Grinspun et al. 2002] and numerical coarsen-
ing [Chen et al. 2017, 2018]. This category of computing techniques
aims to extract a low-rank representation of complex systems via
global (coarse mesh) to local (fine mesh) optimization so that simu-
lation at runtime efficiently captures the correct dynamics even on
coarse grids [Kharevych et al. 2009; Nesme et al. 2009]. It has been
successfully applied for fabrication [Chen et al. 2017; Panetta et al.
2015] or for accelerated simulation [Torres et al. 2016]. Chen et al.
[2018] fit a material-aware shape function so that the coarse mesh
replicates the behavior of a fine model. Constitutive model homoge-
nization focuses more on macroscopic material responses [Blanco
et al. 2016; De Souza Neto et al. 2015], where the underlying strain-
stress relation is synthesized at RVE (representative volume ele-
ment). This method has also been applied to the inverse problem of
micro-structure optimization or topology optimization [Eschenauer
and Olhoff 2001]. For instance, Schumacher et al. [2015] build de-
formable objects with target stiffness using cells of prescribed bulk-
ing behavior. Chen et al. [2015] propose a data-driven extension of
this potential energy fitting idea to non-linear materials where now
a coarse constitutive model is found through linear regression based
on a set of deformation samples obtained from random forcing.

Our method shares many similarities in algorithmic rationale and
method design with those prior arts and specifically targeting realis-
tic and efficient knitwear simulation. Our method is directly relevant
and strongly inspired by recent contributions on HYLC [Sperl et al.
2020, 2022]. HYLC shows a sheet-level homogenization paradigm
that regresses a spline-based constitutive model. The homogeniza-
tion substantially reduces the DOF, and the sheet-level simulation
is much faster than YLS. The major difference between our method
and HYLC is that our homogenization escalates the dimensionality
of coarse mesh i.e., from a sheet- or rod-based discretization to a
volumetric one. On the surface, such a strategy does not align with
the original motivation of homogenization or coarsening, as it uses
more DOF. Yet, we show that the increased dimensionality simplifies
the material design when incorporated with a volume preservation
constraint to homogenize bending and twisting effects of codimen-
sional models. We are not the first to leverage volume preserving

to model nonlinear bending deformation. Chen et al. [2023] use
a volumetric prism element to simulate thick garments and have
demonstrated the feasibility of this approach. Another major differ-
ence is that we learn a set of independent material parameters at
each volume element, resulting in a high-dimensional space-time
optimization problem. We name our method volumetric homoge-

nization, hinting at these novel features of our formulation. The
complexity of volumetric homogenization is unlike most prior meth-
ods. To address this, we propose to leverage a domain-decomposed
PD solver and employ adjoint Gauss-Newton[Zehnder et al. 2021] to
make the homogenization manageable. Volumetric homogenization
is more expressive than HYLC–we can replicate the dynamics of
complex and non-repetitious knits. It is also more efficient–the use
of simpler material models with a fast solver offsets the increase in
homogenized DOF.

3 METHOD OVERVIEW

Our framework allows stable and efficient knitwear simulation that
closely mimics the behavior of a full-scale YLS. To achieve this ob-
jective, our pipeline estimates a spatially varying homogenization
scheme for the yarn fabric. Unlike prior methods that homogenize
a triangular mesh approximating the fabric mid-surface [Feng et al.
2024; Sperl et al. 2020] and assign uniform material parameters
across the mesh, our pipeline, as shown in Fig. 2, begins by con-
structing a volumetric mesh to encapsulate the given yarn-level
model and computes the mass for each nodal point (Sec. 4). With
the sequence of yarn-level simulated results, we proceed to com-
pute the best-fitting material parameter for each volume element.
This is a difficult task, because we do not have bounding volumet-
ric mesh for each frame, the material parameters over mesh are
of high dimension, and the optimization is sensitive to the initial
condition. Therefore, we decompose the problem into two fitting
steps. First, we formulate an optimization problem to find the best-
fitting mesh shape matching the yarn-level deformation (Sec. 5).
With the fitted shape, we employ an adjoint Gauss-Newton for-
mulation[Zehnder et al. 2021] that estimates a quasi-second-order
descent direction of the high-dimension material parameter (Sec. 6).
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Adjoint Gauss-Newton synergizes with a harmonic initialization
algorithm to progressively explore a good initial guess. To utilize the
homogenizedmesh generated from our fitting pipeline, we introduce
a novel GPU-based forward simulator (Sec. 7). The global PD matrix
is partitioned into domains corresponding to different knit patterns,
and we leverage component mode synthesis (CMS) [Craig Jr and
Hale 1988] to build a subspace preconditioner for the global stage
solve, followed by a full-space GPU-based Jacobi iteration.

4 MESH CONSTRUCTION

Fig. 3. Mass lumping.We estimate

lumped mass at each mesh node via

the line integral of the shape function

over the embedded yarn segment.

Given a yarn-level model dis-
cretized into piece-wise line
segments at the rest pose, we
construct a volumetric mesh
to encapsulate the yarn struc-
ture and assign the mass for
each nodal point so it can fa-
cilitate the subsequent fitting
steps and mesh-level simula-
tion.
In mesh construction, we

employ the 3D Bresenham al-
gorithm [Zhang et al. 2018;
Žalik et al. 1997] to create a volumetric grid, such that each voxel
encapsulates a non-zero portion of a yarn thread. To ensure connec-
tivity and eliminate dangling voxels, additional voxels are included
in rare cases where the thread passes through a voxel corner. To
prevent numerical locking of the hexahedral element [Bathe 2006],
each voxel is further split into six tetrahedrons. Let 𝑛𝑌 and 𝑛𝑉 be the
total DOF for the yarns and the volumemesh, respectively. Typically,
𝑛𝑉 is around half of 𝑛𝑌 . In other words, meshing the yarn model is
unable to lower the DOF count by orders like in Sperl et al. [2020].
As we discuss later, our method excels in a more stable energy for-
mulation and highly parallelizable GPU solver after the volumetric
homogenization. This overcomes the cost of high DOF and makes
the entire pipeline much more efficient than prior methods [Feng
et al. 2024; Sperl et al. 2020].

The next step is to distribute the yarn curves to the surrounding
nodal points of the mesh. A 2D illustration is shown in Fig. 3, where
the triangle element encloses a piece of yarn thread of three lin-
earized segments. Let 𝒙 and𝑚 be the position and mass of a material
particle in the element. It is assumed that

𝑚 =
∑
𝑖

𝑁𝑖 (𝜉, 𝜂) ·𝑚𝑖 , (1)

where 𝑚𝑖 represents the lumped mass of the 𝑖-th nodal point.
𝑁𝑖 (𝜉, 𝜂) is the shape function defined with the natural coordinates

𝑁1 (𝜉, 𝜂) = 1 − 𝜉 − 𝜂 , 𝑁2 (𝜉, 𝜂) = 𝜉 , 𝑁3 (𝜉, 𝜂) = 𝜂 .

We compute the lumped mass for each nodal point as

𝑚𝑖 =
∑
𝑗

𝐿𝑗

∫ 1

0
𝑁𝑖

(
𝑱 −1Δ𝒙𝑌𝑗 (𝑡)

)
𝜌 𝑗 (𝑡)d𝑡 , (2)

where the summation index 𝑗 iterates over all linearized yarn seg-
ments (three segments in this example), 𝐿𝑗 is the length of the 𝑗-th

segment, 𝑱 is the element Jacobi, which relates the natural coor-
dinates with the material coordinates, and Δ𝒙𝑌𝑗 (𝑡) is the vector in

the material space from the natural origin to the parameterized
yarn-level position on 𝑗-th segment. For instance, the first segment
in Fig. 3 has two endpoints 𝒙𝑌0 and 𝒙𝑌1 , and we have

Δ𝒙𝑌 (𝑡) = 𝒙𝑌0 + 𝑡
(
𝒙𝑌1 − 𝒙𝑌0

)
− 𝒙0 . (3)

Note that we use the overbar ¯(·) to denote the rest-shape position.

5 SHAPE FITTING

With the mesh constructed at the rest pose, our next step is to es-
timate its shape based on the simulated yarn-level data for each
frame. This boils down to finding out the mesh position given the
displacement of embedded yarn threads. We use superscripts (·)𝑌

and (·)𝑉 to differentiate variables defined on yarns or on the vol-

ume mesh. Let 𝒙𝑉 ∈ R
3𝑛𝑉 be mesh-level position, stacking 𝑥 , 𝑦,

and 𝑧 coordinates of all the nodes on the tetrahedral mesh. The
mesh-to-yarn (V2Y) transfer 𝜙𝑉 2𝑌 : R3𝑛𝑉 → R

3𝑛𝑌 is conveniently
established with shape-function-based interpolation

𝜙𝑉 2𝑌 (𝒙𝑉 ) � 𝑵𝒙𝑉 , (4)

where 𝑵 ∈ R
3𝑛𝑉 ×3𝑛𝑌 contains 𝑁𝑖 values at yarn endpoints. How-

ever, the map along the other direction i.e., from yarn to mesh or
Y2V, is less straightforward.

We formulate the Y2V transfer 𝜙𝑌2𝑉 by minimizing position and

deformation inconsistency given an input yarn pose 𝒙𝑌 ∈ R
3𝑛𝑌 .

The deformation error measures the discrepancy of the deformation
gradient tensor between yarn and the encapsulating volumetric
mesh. The deformation gradient of a yarn segment is computed as:

𝑭𝑌 (𝒙𝑌 ) =
[
𝒙𝑌1 − 𝒙𝑌0 , 𝒏

𝑌
1 , 𝒏

𝑌
2

] [
𝒙𝑌1 − 𝒙𝑌0 , 𝒏̄

𝑌
1 , 𝒏̄

𝑌
2

]−1
where 𝒙𝑌0,1 and 𝒙

𝑌
0,1 are the rest-shape and deformed positions of two

endpoints and 𝒏̄𝑌0,1 and 𝒏
𝑌
0,1 are twomutually perpendicular material

normals. The deformation gradient includes a rotation and stretch
component. While the stretch component can be directly averaged
to the corresponding element, the rotation component cannot. To
manage the averaging of the rotation component, we apply polar
decomposition to 𝑭𝑌 , which yields a rotation tensor and a symmet-
ric deformation tensor such that 𝑭𝑌 = 𝑹𝑌 𝑺𝑌 . We parameterize the
rotation tensor using matrix exponential as 𝑹𝑌 = exp(𝛀𝑌 ). Note
that 𝛀𝑌 is a skew-symmetric matrix, which can be directly aver-
aged using weighted summation. This geometrically corresponds to
averaging the rotation axis and rotation angle[Grassia 1998]. Based
on this information, we estimate the deformation gradient of the
element as

𝑭𝑌2𝑉 (𝒙𝑌 ) = exp
�	
 1∑

𝑗 𝐿𝑗

∑
𝑗

𝐿𝑗𝛀
𝑌
𝑗
�
� �	
 1∑

𝑗 𝐿𝑗

∑
𝑗

𝐿𝑗 𝑺
𝑌
𝑗
�
� . (5)

As in Eq. 2, the summation is for all the yarn segments in the element.
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We define the Y2V transfer as the minimizer of the optimization

𝜙𝑌2𝑉 (𝒙𝑌 ) � argmin
𝑥

∑
𝑒

𝑉𝑒

���D · (𝑩𝑒𝒙) − 𝑭𝑌2𝑉𝑒

���2
𝐹

+ 𝛼
���𝑵𝑴𝑉 𝒙 −𝑴𝑌 𝒙𝑌

���2 . (6)

Here, 𝑩𝑒 ∈ R
12×3𝑛𝑌 is a binary matrix picking 12 DOFs for the

tetrahedron 𝑒 from 𝒙 i.e., 𝒙𝑒 = 𝑩𝑒𝒙 . D ∈ R
3×3×12 is a third-order

tensor. It works as a differential operator to compute the deforma-
tion gradient of the element out of 𝒙𝑒 . ‖ · ‖𝐹 denotes the matrix
Frobenius norm. 𝛼 is a hyperparameter, and we set it as 𝛼 = 0.1.𝑴𝑉

is the diagonal lumped mass matrix of the mesh (i.e., using Eq. (2)),
and 𝑴𝑌 is the mass matrix for the yarn. 𝑉𝑒 is the volume of the
element. In other words, Y2V transfer is essentially a volumetric Pos-
sion reconstruction [Kazhdan et al. 2006]–we expect 𝜙𝑌2𝑉 (𝒙𝑌 ) to

capture the yarn-level deformation while using
��𝑵𝑴𝑉 𝒙 −𝑴𝑌 𝒙𝑌

��2
as a mass-weighted regularization penalty.

Shape fitting retrieves the information of the mesh from YLS and
allows us to estimate inertia forces as defined in Eq. 14, derived
from an arbitrary yarn motion sequence. As a result, the yarn-level
deformation can be understood as a quasi-static one under the non-
inertia frame, and the volumetric homogenization only needs to
focus on fitting the elastic material since mass is decoupled.

6 ELASTICITY FITTING

Elasticity fitting lies at the core of our volumetric homogenization
pipeline. In a nutshell, elasticity fitting estimates spatially varying
material parameters for each element given input YLS sequences.
This is particularly challenging because 1) volumetric homogeniza-
tion seeks a high-dimension material parameter with a large number
of unknowns, and 2) the optimization takes consideration of all yarn
poses. We employ several techniques to address these challenges
including the use of second-order Gauss-newton, as described by
Zehnder et al. [2021], within the framework of the adjoint method.
Additionally, we introduce a novel harmonic initialization scheme
for initial value guessing. We borrow the idea of stochastic de-
scent [Bottou et al. 1991] to mitigate the dimensionality concern of
space-time optimization.

Let 𝑛𝐸 be the total number of elements on the mesh. The material
vector 𝜸 has 2𝑛𝐸 freedoms such that an element 𝑒 has two hypothe-
sized material parameters, namely 𝛾𝑠𝑒 and 𝛾𝑣𝑒 . We define an intuitive
elastic energy at each element 𝑒 as

𝐸𝑒 = 𝛾𝑠𝑒𝑉𝑒 ‖𝑭𝑒 − 𝑹 (𝑭𝑒 )‖
2
𝐹 + 𝛾𝑣𝑒𝑉𝑒 ‖𝑭𝑒 − 𝑽 (𝑭𝑒 )‖

2
𝐹 , (7)

where

𝑹 = arg min
𝑨∈SO(3)

‖𝑭 −𝑨‖2𝐹 and 𝑽 = arg min
𝑨∈SL(3)

‖𝑭 −𝑨‖2𝐹 . (8)

Here, SL(3) is the special linear group that preserves the volume
(i.e. |𝑽 | = 1), SO(3) is the special orthogonal group that preserves
the length, 𝛾𝑠𝑒 determines the strength of penalizing the strain mag-
nitude, and 𝛾𝑣𝑒 gives the strength of preserving the volume.

The choice of energy. There exists a wide range of choices for
energy formulation, andmany commonly seen hyperelastic energies
should serve the purpose well. Our primary argument is that the
material complexity holds less significance compared to the material

variation, which naturally reflects the spatial adaptivity inherent
in knit patterns. The elastic model of Eq. 7 is simple–its constraint-
based quadratic form eases the implementation efforts and produces
good results in practice.

Elasticity fitting finds the optimal𝜸 i.e., the value of 𝛾𝑠𝑒 and 𝛾𝑣𝑒 for
all 𝑛𝐸 elements, such that V2Y transfer (Eq. 4) of the resultant mesh
simulation, 𝒙𝑉 (𝜸 ), constitutes a similar yarn dynamics obtained
from the full-scale YLS. For a YLS sequence of 𝑛𝐹 frames{

𝒙𝑌1 , 𝒙
𝑌
2 , 𝒙

𝑌
3 , · · · , 𝒙

𝑌
𝑛𝐹

}
,

we build an error metric or the loss function between 𝒙𝑌𝑖 and 𝒙𝑉𝑖 (𝜸 )

for 𝑖 = 1, · · · , 𝑛𝐹 and minimize the accumulated error for the entire
sequence

argmin
𝜸

𝑛𝐹∑
𝑖=1

𝜖𝑖 (𝜸 ), s.t. 𝜸 ≥ 0, (9)

where

𝜖𝑖 (𝜸 ) =
∑
𝑒

𝑉𝑒

���D ·
(
𝑩𝑒𝒙

𝑉
𝑖 (𝜸 )

)
− 𝑭𝑌2𝑉𝑒 (𝒙𝑌𝑖 )

���2
𝐹

+ 𝛼
���𝑵𝑴𝑉 𝒙𝑉𝑖 (𝜸 ) −𝑴𝑌 𝒙𝑌𝑖

���2 . (10)

Here, 𝜖𝑖 adopts the same error measure as in Y2V transfer (Eq. 6)
but it now depends on 𝜸 since 𝒙𝑉𝑖 (𝜸 ) relates to 𝜸 by the mesh-level

simulation. The sub-index 𝑖 here refers to the index of the input 𝑛𝐹

YLS poses.
Eq. 9 describes a space-time optimization problem. It imposes a

significant computational challenge since both 𝑛𝐹 and 𝑛𝐸 are big
numbers, not to mention 𝑛𝑉 and 𝑛𝑌 are also of high resolution.
While first-order descent methods like gradient descent are often
preferred due to their simplicity, they fail to deliver a good result
even after a large number of iterations in this case. We have to resort
to more sophisticated optimization techniques of a higher order for
elasticity fitting of Eq. 9.

6.1 Adjoint Gradient Descent

Let us start with the gradient. Expanding the gradient of 𝜖𝑖 via the
chain rule yields

𝜕𝜖𝑖
𝜕𝜸

=
𝜕𝜖𝑖

𝜕𝒙𝑉𝑖
·
𝜕𝒙𝑉𝑖
𝜕𝜸

. (11)

The specific form of 𝜕𝒙𝑉 /𝜕𝜸 is up to themesh-level simulation result,
which is often formulated as a variational optimization minimizing
the sum of the inertial potential 𝐼 and the elasticity potential

∑
𝐸𝑒

argmin
𝒙𝑉𝑖

𝐼 +
∑
𝑒

𝐸𝑒 , where 𝐼 =
1

2Δ𝑡2
𝒂𝑉

�

𝑖 𝑴𝑉 𝒂𝑉𝑖 . (12)

Shape fitting allows us to approximate 𝒂𝑉𝑖 via

𝒂𝑉𝑖 ≈ 𝜙𝑌2𝑉
(
𝒙𝑌𝑖 − 2𝒙𝑌𝑖−1 + 𝒙𝑌𝑖−2

)
− Δ𝑡2𝑴𝑉 −1

𝒇𝑉𝑖 , (13)

so that it becomes a known vector and depends on 𝒙𝑌𝑖 , 𝒙
𝑌
𝑖−1, 𝒙

𝑌
𝑖−2,

and the external force 𝒇𝑉𝑖 . In other words, the Y2V transfer function

𝜙𝑌2𝑉 and pre-computed nodal mass (Eq. 2) decouple 𝐼 from the
simulation, converting a dynamic problem to a quasi-static one.
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The necessary optimality condition of Eq. 12 gives

𝒈(𝒙𝑉𝑖 ,𝜸 ) � 𝑴𝑉𝜙𝑌2𝑉
(
𝒙𝑌𝑖 − 2𝒙𝑌𝑖−1 + 𝒙𝑌𝑖−2

)
− 𝒇𝑉𝑖︸������������������������������������������︷︷������������������������������������������︸

inertia force + external force

+
𝜕
∑
𝐸𝑒

𝜕𝒙𝑉𝑖
= 0.

(14)
It is easy to see that Eq. 14 is the requirement of force equilibrium,
which is the constraint that should always be satisfied, making it an
identity equation. Differentiating Eq. 14 at both sides w.r.t. 𝜸 yields

d𝒈

d𝜸
=

𝜕𝒈

𝜕𝒙𝑉𝑖
·
𝜕𝒙𝑉𝑖
𝜕𝜸

+
𝜕𝒈

𝜕𝜸
= 0 ⇒

𝜕𝒙𝑉𝑖
𝜕𝜸

= −

(
𝜕𝒈

𝜕𝒙𝑉𝑖

)−1
·
𝜕𝒈

𝜕𝜸
. (15)

To avoid solving the linear system of 𝜕𝒈/𝜕𝒙𝑉𝑖 for 2𝑛𝐸 times

(recalling 𝜸 is a 2𝑛𝐸-dimension material vector and, therefore,

𝜕𝒈/𝜕𝒙𝑉𝑖 ∈ R
3𝑛𝑉 ×2𝑛𝐸

), the adjoint method [Givoli 2021; Tarantola
2005] leverages an adjoint state vector 𝝀, and evaluates the gradient
of the target loss function via

𝜕𝜖𝑖
𝜕𝜸

= −𝝀�
𝜕𝒈

𝜕𝜸
, (16)

where 𝝀 is obtained by solving the linear system of(
𝜕𝒈

𝜕𝒙𝑉𝑖

)
𝝀 =

(
𝜕𝜖𝑖

𝜕𝒙𝑉𝑖

)�
. (17)

The gradient of the loss function 𝜕𝜖𝑖/𝜕𝜸 allows us to employ first-
order optimizers, e.g., gradient descent, to iterative refine the ma-
terial vector. Unfortunately, it is known that first-order methods
are less effective as 𝜸 approaches a local optimum. To improve
the convergence, we employ a hybrid optimization scheme, which
uses different optimizers at different stages of the elasticity fitting
process.

6.2 Adjoint Gauss-Newton

A well-known strategy to improve the convergence of gradient
descent is to regularize the gradient by a preconditioning matrix
𝑷𝑖 , often an SPD (symmetric positive definite) matrix. For instance,
Newton’s method uses the inverse of the Hessian matrix

𝑯𝑖 =
𝜕2𝜖

𝜕𝜸2
=

(
𝜕𝒙𝑉𝑖
𝜕𝜸

)�
·
𝜕2𝜖𝑖

𝜕𝒙𝑉
2

𝑖

·
𝜕𝒙𝑉𝑖
𝜕𝜸

+
𝜕𝜖𝑖

𝜕𝒙𝑉𝑖
·
𝜕2𝒙𝑉𝑖
𝜕𝜸2

, (18)

so that the preconditioned search direction becomes 𝑯−1
𝑖 (𝜕𝜖𝑖/𝜕𝜸 )�.

When ‖𝜕𝜖𝑖/𝜕𝜸 ‖ is small, Newton’s method delivers locally second-
order convergence [Nocedal and Wright 1999].

We observe that when 𝜖𝑖 is small and mesh deformation 𝒙𝑉𝑖 starts

aligning with the target yarn pose 𝒙𝑌 , 𝜕𝜖𝑖/𝜕𝒙𝑉𝑖 is always close to
zero. This allows an alternative precondition matrix 𝑷𝑖 that discards
the second term of H𝑖 , such that

𝑷𝑖 =

(
𝜕𝒙𝑉𝑖
𝜕𝜸

)�
𝑮𝑖

𝜕𝒙𝑉𝑖
𝜕𝜸

, (19)

where, 𝑮𝑖 = 𝜕2𝜖𝑖/𝜕𝒙𝑉
2

𝑖 ∈ R
3𝑛𝑉 ×3𝑛𝑉 and can be pre-computed. This

Hessian simplification strategy is a.k.a. Gauss-Newton method, and

the preconditioned search direction can be obtained by solving the
linear system 𝑷𝑖 :

𝑷𝑖𝒅
𝐺𝑁
𝑖 = −

(
𝜕𝜖𝑖
𝜕𝜸

)�
, (20)

where the loss gradient on the r.h.s. of Eq. 20 can be obtained via
the adjoint solve (Eq. 16 and Eq. 17).
While the formulation is well known, Gauss-Newton is seldom

used with an adjoint method in practice. The difficulty lies in the
fact that 𝜕𝒙𝑉𝑖 /𝜕𝜸 should never be explicitly evaluated via solving
Eq. 15 and, therefore, we do not have the actual precondition matrix
𝑷𝑖 . Even if we could compute 𝑷𝑖 exactly, solving Eq. 20 remains
prohibitive since 𝑷𝑖 is likely a dense matrix.
Zehnder et al. [2021] demonstrate that this issue can be circum-

vented. Similar to how the adjoint method avoids explicit computa-

tion of
𝜕𝑥𝑀

𝑖
𝜕𝛾 , two additional adjoint state vectors are introduced to

transform the dense system Eq. 20 into the following larger sparse
linear system:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑮𝑖 −

(
𝜕𝒈
𝜕𝒙𝑉𝑖

)�
0

−
𝜕𝒈
𝜕𝒙𝑉𝑖

0
𝜕𝒈
𝜕𝜸

0

(
𝜕𝒈
𝜕𝜸

)�
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

𝝁
𝝂

𝒅𝐺𝑁
𝑖

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0

0(
𝜕𝜖𝑖
𝜕𝜸

)� ⎤⎥⎥⎥⎥⎥⎦ . (21)

One can quickly verify that the solution of Eq. 21 coincides with
the solution of Eq. 20: from the first two lines of Eq. 21, we have
(𝜕𝒈/𝜕𝒙𝑉𝑖 )

−�𝑮𝑖𝝁 = 𝝂 and (𝜕𝒈/𝜕𝒙𝑉𝑖 )
−1 (𝜕𝒈/𝜕𝜸 )𝒅𝐺𝑁

𝑖 = 𝝁, suggest-
ing (

𝜕𝒈

𝜕𝒙𝑉𝑖

)−�
𝑮𝑖

(
𝜕𝒈

𝜕𝒙𝑉𝑖

)−1
𝜕𝒈

𝜕𝜸︸����������︷︷����������︸
−𝜕𝒙𝑉𝑖 /𝜕𝜸

𝒅𝐺𝑁
𝑖 = 𝝂 .

Left multiplying (𝜕𝒈/𝜕𝜸 )� both sides and knowing (𝜕𝒈/𝜕𝜸 )�𝝂 =
𝜕𝜖𝑖/𝜕𝒙𝑉𝑖 , i.e. the third row of Eq. 21, restores the formula back to
the vanilla Gauss-Newton of Eq. 20.
When 𝜸 is fixed, 𝜖𝑖 becomes a quadratic form of 𝒙𝑉𝑖 , and 𝑮𝑖

is therefore non-negative definite. To this end, we follow the
Levenberg-Marquardt method [Moré 2006] that adds a small
diagonal 𝜅𝑰 at l.h.s. of Eq. 21 to secure its positive definiteness. It is
noteworthy that 𝜕𝒈/𝜕𝒙𝑉𝑖 is a sparse matrix–it has non-zero entities
only at the adjacent mesh elements (similar to FEM matrices),
and 𝜕𝒈/𝜕𝜸 is also a sparse matrix (only the element’s material
parameter influences its residual force). Solving Eq. 21 is more
efficient than solving Eq. 20 despite the increased matrix dimension.

6.3 Linear Search & Non-Negativity Constraint

Our optimization is two-stage. We use the vanilla gradient descent
based on the adjoint method (Eq. 17) for the first batch of iterations
(10 - 15 iterations in our implementation). Gradient descent remains
a competitive option at the early stage of the optimization due to its
efficiency. Adjoint Gauss-Newton (Eq. 21) then ensues, which offers
a stronger descent direction. We observe that 20 - 30 Gauss-Newton
iterations are more effective than over 1,000 gradient descent in the
later phase of the optimization.
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It should be noted that all the components i.e., 𝜕𝒈/𝜕𝒙𝑉𝑖 , 𝜕𝒈/𝜕𝜸 ,
and 𝜕𝜖𝑖/𝜕𝜸 that assemble the Gauss-Newton system are readily
available after the gradient computation. Compared with gradient
descent, the additional cost of our adjoint Gauss-Newton comes from
the linear solve of Eq. 21. Thanks to the sparsity of the matrix, this
step is not the bottleneck of the pipeline. Instead, the most expensive
computation is always at finding 𝒙𝑉𝑖 to satisfy the equilibrium con-
dition i.e., Eq. 14. As to be discussed in Sec. 7, the constraint-based
energy formulation (Eq. 7) allows the use of highly efficient parallel
GPU procedures to accelerate this step, which is not only helpful
for the forward simulation but also for the elasticity fitting.
A line search is needed for both gradient descent and Gauss-

Newton phases to prevent overshooting. We use the default step
size of 0.01 for gradient descent refinements and 1.0 for Gauss-
Newton refinements.We shrink the step size by half if the refinement
produces a higher loss value.
𝜸 should be non-negative, and simulation becomes ill-defined if

some components [𝛾] 𝑗 in 𝜸 are smaller than zero. We use a mixed
projection-pivoting strategy to enforce the non-negativity of 𝜸 .
Specifically, when a refinement 𝜸 ← 𝜸 + Δ𝜸 produces negative
components ([𝛾] 𝑗 < 0), we correct their values to be a small positive
quality of 1𝑒 − 3 and cache indices of those components/elements. If
the next Δ𝜸 tries to further reduce the value of those parameters, we
clamp them to zero ([Δ𝛾] 𝑗 ← 0) to cancel such constraint-violating
refinement. This is an easy but heuristic mechanism to enforce𝜸 > 0.
Occasionally, the clamped search direction becomes non-descent
even using adjoint Gauss-Newton. When this occurs, we opt for
the pivoting method [Baraff 1994] that sets most negative [𝛾] 𝑗 as
equality-constrained ones (i.e., [𝛾] 𝑗 = 1𝑒 − 3) and precludes them
from the Gauss-Newton solve by removing corresponding rows and
columns in the l.h.s. of Eq. 21. When pivoting is activated, we do
not relax those equality-constrained DOFs. Fortunately, pivoting is
rarely needed provided a reasonable initial guess of 𝜸 .

6.4 Sample-by-Sample Fitting

The discussion so far has focused on elasticity fitting for one input
yarn pose 𝒙𝑌𝑖 . Recall that the global loss function accumulates across

all 𝑛𝐹 poses (i.e., see Eq. 9). This leads to a very high-dimension
space-time optimization problem, and solving it in its original form
is infeasible. To ease the computational cost, we optimize 𝜸 sequen-
tially in a frame-by-frame manner. Doing so is similar to stochastic
optimization widely used in deep learning [Kingma and Ba 2015].
Specifically, we start with solving the sub-problem of Eq. 9 for the
first pose 𝒙𝑌𝑖 as:𝜸1 ← argmin𝜸 𝜖1 (𝜸 , 𝒙𝑌1 ). The resulting𝜸1 is saved
as the current solution of the material vector such that 𝜸 ← 𝜸1.
Once𝜸𝑘 is computed for the 𝑘-th pose, we update𝜸 via by convexly
averaging 𝜸 and 𝜸𝑘 as

𝜸 ←
𝑤

𝑤 +𝑤𝑘
𝜸 +

𝑤𝑘

𝑤 +𝑤𝑘
𝜸𝑘 , (22)

Here, 𝑤,𝑤𝑘 > 0 suggest the importance of 𝜸 and 𝜸𝑘 . We find the
elasticity energy stored in 𝒙𝑌

𝑘
to be a good choice of𝑤𝑘 , which is

invariant under rigid body movements and always non-negative.
The weight of 𝜸 is initially set as zero. As the optimization moves
forward, we keep tracking the most deformed yarn pose and use
the corresponding elastic energy as𝑤 .

Fig. 4. Harmonic initialization.We design a progressive initial-

ization strategy based on Harmonic bases of the volume mesh. By

projecting the material vector into the Harmonic subspaces of different

ranks, volumetric homogenization always finds a reliable initial value

for the two-stage elasticity fitting procedure.

Theoretically, such an online optimization strategy takes multiple
epochs to converge. However, we note that a single pass over all
frames always generates high-quality results in practice. Unlike in
deep learning, where training data are considered equally important,
most YLS poses are redundant or repeating, e.g. poses close in time
often have a similar geometry because the motion trajectory of
the fabric often remains smooth. This observation motivates us
to further sparse the computation by applying elasticity fitting at
a subset of fewer sample poses and finding the overall 𝜸 sample
by sample. In practice, elasticity fitting over handful poses yields
reasonably good results.

6.5 Harmonic Initialization

Another challenge is the high dimensionality of the material vector
𝜸 . By assigning each element two independent freedoms, the ma-
terial versatility is enhanced. On the downside, it also makes the
fitting process sensitive to the initial guess of 𝜸 . An unlucky guess
easily strands the optimization at local minima. To make our per-
element homogenization reliable, our pipeline includes a harmonic
initialization scheme, as shown in Fig. 4.

The core idea is progressively exploring the material space from
low frequency to high frequency to build the material complex-

ity incrementally. To this end, we split 𝜸 into 𝜸𝑠 ∈ R
𝑛𝐸

and 𝜸 𝑣 ∈

R
𝑛𝐸

, which collect 𝛾𝑠𝑒 and 𝛾𝑣𝑒 for all the elements on the mesh re-
spectively. After that, we construct a set of Harmonic bases 𝑯 =
[𝒉1,𝒉2, · · · ,𝒉𝑟 ] by computing 𝑟 eigenvectors of the mesh Lapla-
cian [Nasikun et al. 2018; Vallet and Lévy 2008] corresponding to
the 𝑟 smallest eigenvalues (see Fig. 5). The low-frequency material
variation is assumed to be well captured by this set of basis vectors,
and we require

𝜸 =

[
𝜸𝑠

𝜸 𝑣

]
= diag(𝑯 ,𝑯 )

[
𝒒𝑠

𝒒𝑣

]
︸��︷︷��︸

𝒒

, (23)

where 𝒒 ∈ R
2𝑟 is the generalized material vector of much lower

dimension. Since 𝑯 is constant, all the derivatives w.r.t. 𝜸 can be

ACM Trans. Graph., Vol. 43, No. 6, Article 207. Publication date: December 2024.



Volumetric Homogenization for Knitwear Simulation • 207:9

Fig. 5. Harmonic material bases. We leverage mesh Harmonics to

explore a good initial material variation from low frequency to high

frequency. This figure visualizes the first ten basis vectors.

conveniently transferred to 𝒒 by the chain rule:

𝜕(·)

𝜕𝒒
=

𝜕(·)

𝜕𝜸
·
𝜕𝜸

𝜕𝒒
=

𝜕(·)

𝜕𝜸
diag(𝑯 ,𝑯 ) .

For instance, to switch the optimization target to 𝒒 in Eq. 21, we
right multiply diag(𝑯 ,𝑯 ) to 𝜕𝒈/𝜕𝜸 and (𝜕𝜖𝑖/𝜕𝜸 )�, and sandwich
𝑮𝑖 with diag(𝑯 ,𝑯 ) as

𝑮𝑖 ← diag(𝑯�,𝑯�)𝑮𝑖diag(𝑯 ,𝑯 ) . (24)

The harmonic initialization starts with 𝑟 = 1. In this case, 𝑯 has a
single constant-value basis vector 𝒉1. Projecting 𝜸 into this basis
is equivalent to requiring 𝜸𝑠 and 𝜸 𝑣 to be constant across all the
elements. This result is then used as the initial guess for a bigger
𝑟 . The harmonic initialization moves forward progressively with
𝑟 = 1, 𝑟 = 10, and 𝑟 = 30. Afterward, we fit the un-reduced 𝜸 based
on the low-rank initialization.

7 DOMAIN-DECOMPOSED PROJECTIVE DYNAMICS

After 𝜸 is obtained, we can simulate the volume mesh at the run-
time, which is used to drive the deformation of the underlying yarns
via 𝜙𝑀2𝑌 . Our volume embedding implicitly deals with yarn-yarn
contacts and collisions. This section focuses on the mesh-level sim-
ulation, and we omit the superscript𝑀 for simplicity of notation.
As in Eq. 12, we aim to minimize the total variational energy.

Instead of using the approximation in Eq. 13, 𝒂 is now defined as

𝒂 = 𝒙 − 𝒙∗ − Δ𝑡 �𝒙∗ − Δ𝑡2𝑴−1𝒇 , (25)

where 𝒙∗ and �𝒙∗ are the mesh-level position and velocity in the
previous time step. Instead of solving unknown position 𝒙 using
existing methods, such as Newton’s method, we present an efficient
domain-decomposed projective dynamics for our constraint-based
energy formulation.

7.1 Projective Dynamics

Projective dynamics (PD) [Bouaziz et al. 2014] splits the variational
optimization into global and local steps. At the local step, PD con-
siders the elasticity energy of each element as the shortest square
distance to a constraint manifold on which the constraint is exactly
satisfied. The key operation is to identify such spot on the constraint
manifold i.e., the target position. One may notice that our elasticity
energy (Eq. 7 and Eq. 8) is formulated exactly in this way. Therefore,
the goal of the local step is to find 𝑹 and 𝑽 for each mesh element.
The best-fitting rotation can be obtained by polar decomposing
the element’s deformation gradient 𝑭𝑒 . To obtain the best-fitting

volume-preserving transformation 𝑽 , we first compute its SVD (sin-
gular value decomposition) as 𝑭𝑒 = 𝑼𝚺𝑾�. 𝚺 is a diagonal matrix
of three singular values 𝜎1, 𝜎2, and 𝜎3, and the volume-preserving
constraint becomes 𝜎1𝜎2𝜎3 = 1. If the element is not inverted or
degenerated, 𝜎1, 𝜎2, and 𝜎3 should be positive. We then transfer this
constraint into an optimization procedure of three singular values:

arg min
Δ𝜎1,Δ𝜎2,Δ𝜎3

Δ𝜎21 + Δ𝜎22 + Δ𝜎23 ,

s.t. (𝜎1 + Δ𝜎1) (𝜎2 + Δ𝜎2) (𝜎3 + Δ𝜎3) = 1,

and 𝜎1 + Δ𝜎1, 𝜎2 + Δ𝜎2, 𝜎3 + Δ𝜎3 > 0. (26)

To solve this nonlinear programming problem, we form its KKT
(Karush–Kuhn–Tucker) system only involving the equality con-
straint using the Lagrange multiplier method. If any of Δ𝜎1, Δ𝜎2 or
Δ𝜎3 violates the inequality constraint, we clamp it to [0.01, + inf]
and fix its value at the next iteration. While Eq. 26 is highly nonlin-
ear, it only has three unknowns. In practice, we always find a good
local projection for the volume-preserving constraint in very few
iterations.
The global step is a standard linear solve in the form of 𝑲𝒙 = 𝒃

where we have

𝑲 =

(
𝑴

Δ𝑡2
+

∑
𝑒

𝑉𝑒 (𝛾
𝑠
𝑒 + 𝛾

𝑣
𝑒 )𝑩

�
𝑒

(
D� : D

)
𝑩𝑒

)
𝒙, (27)

and

𝒃 =
𝑴

Δ𝑡2
𝒂 +

∑
𝑒

𝑉𝑒𝛾
𝑠
𝑒𝑩

�
𝑒

(
D� : 𝑹 (𝑩𝑒𝒙

∗)
)

+
∑
𝑒

𝑉𝑒𝛾
𝑣
𝑒𝑩

�
𝑒

(
D� : 𝑽 (𝑩𝑒𝒙

∗)
)
. (28)

The global step stands as the most expensive computation along
the pipeline , as the Cholesky decomposition of 𝐾 may yield a large
dense matrix that is not GPU-friendly.

7.2 Domain Decomposition

Fig. 6. DOF types with domain

decomposition. The fabric is de-

composed into two domains corre-

sponding to two different knitting

patterns. It is required that dupli-

cated boundary DOFs at domains

must always be equal to each other.

To accelerate the global step
computation, we exploit the
component mode synthesis
(CMS) [Craig Jr 1985; Craig Jr
and Hale 1988] to decompose
the system into multiple do-
mains (or components) and
build a linear subspace at each
domain to analyze the dynamic
responses of complex structures.
CMS was originally designed for
linear structural analysis, and
its generalization to nonlinear
simulation remains an open
research problem. Fortunately,
the unique modality of PD
allows us to apply CMS just at
the global stage solve, so we can
partition the mesh into multiple
domains without aligning the
decomposition with the variation of the underlying knit patterns.
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Unknown DOFs at each domain can be now grouped into internal
DOFs and boundary DOFs. As the name suggests, the boundary
DOFs interface with the neighbor domains while the internal DOFs
are isolated by the boundary DOFs.

Without loss of generality, let us assume the mesh is decomposed
into two domains. If we extract rows and columns corresponding to
DOFs of the 𝑑-th domain for 𝑑 = 1, 2, a domain-level global system
can be built as⎡⎢⎢⎢⎢⎣

𝑲 (𝑖𝑖 )
(𝑑 )

𝑲 (𝑖𝑏 )
(𝑑 )

𝑲 (𝑏𝑖 )
(𝑑 )

𝑲 (𝑏𝑏 )
(𝑑 )

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝒙 (𝑖 )
(𝑑 )

𝒙 (𝑏 )
(𝑑 )

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝒃 (𝑖 )
(𝑑 )

𝒃 (𝑏 )
(𝑑 )

⎤⎥⎥⎥⎥⎦ . (29)

Here, subscripts (·) (𝑖 ) and (·) (𝑏 ) denote the DOF type i.e., either
internal or boundary; the subscript (·)(𝑑 ) indicates the domain index.
Switching the order of subscripts applies the matrix transpose i.e.,

𝑲 (𝑖𝑏 )
(𝑑 )

= 𝑲 (𝑏𝑖 )�

(𝑑 )
. To analyze the internal response of the domain,

we prescribe a unit displacement at each boundary DOF, and pre-
compute its internal response for some unknown boundary stimuli⎡⎢⎢⎢⎢⎣

𝑲 (𝑖𝑖 )
(𝑑 )

𝑲 (𝑖𝑏 )
(𝑑 )

𝑲 (𝑏𝑖 )
(𝑑 )

𝑲 (𝑏𝑏 )
(𝑑 )

⎤⎥⎥⎥⎥⎦
[
𝚿(𝑖 )

(𝑑 )
𝑰

]
=

[
0

𝑭 (𝑏 )
(𝑑 )

]
, (30)

where 𝑰 is an identity matrix corresponding to the prescribed bound-

ary displacements, and 𝑭 (𝑏 )
(𝑑 )

is the external stimuli (they are not the

“forces” but a type of system load in a more general sense). We do

not really care about the value of 𝑭 (𝑏 )
(𝑑 )

but are more interested in

the system response at internal DOFs, i.e., 𝚿(𝑖 )
(𝑑 )

. It can be computed

via expanding the first row of Eq. 30:

𝑲 (𝑖𝑖 )
(𝑑 )

𝚿(𝑖 )
(𝑑 )

+ 𝑲 (𝑖𝑏 )
(𝑑 )

= 0 ⇒ 𝚿(𝑖 )
(𝑑 )

= −
(
𝑲 (𝑖𝑖 )
(𝑑 )

)−1
𝑲 (𝑖𝑏 )
(𝑑 )

. (31)

Due to the linearity of this problem, 𝚿(𝑖 )
(𝑑 )

encodes all the possible

internal responses induced by boundary stimuli. When the domain

does not undertake any non-boundary loads, 𝚿(𝑖 )
(𝑑 )

relates bound-

ary DOFs and internal DOFs as 𝒙 (𝑖 )
(𝑑 )

= 𝚿(𝑖 )
(𝑑 )

𝒙 (𝑏 )
(𝑑 )

. They are a.k.a.

boundary modes in CMS, and serve as subspace basis vectors for our
global solve. For non-boundary responses, we compute a compact

set of eigenvectors (e.g., 20) of 𝑲 (𝑖𝑖 )
(𝑑 )

corresponding to the smallest

eigenvalues (
𝚽(𝑖 )
(𝑑 )

)�
𝑲 (𝑖𝑖 )
(𝑑 )

𝚽(𝑖 )
(𝑑 )

= 𝚲(𝑑 ) , (32)

where 𝚲(𝑑 ) is the diagonal matrix of eigenvalues. The composition

of𝚿(𝑖 )
(𝑑 )

and𝚽(𝑖 )
(𝑑 )

constitutes a linear subspace for the internal DOFs

of the domain:

𝒙 (𝑖 )
(𝑑 )

=
[
𝚿(𝑖 )

(𝑑 )
,𝚽(𝑖 )

(𝑑 )

] ⎡⎢⎢⎢⎢⎣
𝒑 (𝑖 )
(𝑑 )

𝒙 (𝑏 )
(𝑑 )

⎤⎥⎥⎥⎥⎦ . (33)

Here, 𝒑 (𝑖 )
(𝑑 )

is the generalized coordinate of the 𝑑-th domain for its

non-boundary-driven deformation. The internal boundary-driven

deformation is fully prescribed by its boundary deformation of 𝒙 (𝑏 )
(𝑑 )

.

This allows us to construct a global subspace basis matrix, which

has a block-wise structure, to relate the reduced coordinate and the
fullspace coordinate as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙 (𝑖 )
(1)

𝒙 (𝑏 )
(1)

𝒙 (𝑖 )
(2)

𝒙 (𝑏 )
(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝚽(𝑖 )
(1)

0 𝚿(𝑖 )
(1)

0 0 𝑰

0 𝚽(𝑖 )
(2)

𝚿(𝑖 )
(2)

𝑰 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝒑 (𝑖 )
(1)

𝒑 (𝑖 )
(2)

𝒙 (𝑏 )

⎤⎥⎥⎥⎥⎥⎥⎦ . (34)

It is known that a domain-decomposed global system must include
extra boundary constraints to make sure domains are seamlessly
connected such as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑲 (𝑖𝑖 )
(1)

𝑲 (𝑖𝑏 )
(1)

0 0

𝑲 (𝑏𝑖 )
(1)

𝑲 (𝑏𝑏 )
(1)

0 0

0 0 𝑲 (𝑖𝑖 )
(2)

𝑲 (𝑖𝑏 )
(1)

0 0 𝑲 (𝑏𝑖 )
(2)

𝑲 (𝑏𝑏 )
(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙 (𝑖 )
(1)

𝒙 (𝑏 )
(1)

𝒙 (𝑖 )
(2)

𝒙 (𝑏 )
(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒃 (𝑖 )
(1)

𝒃 (𝑏 )
(1)

𝒃 (𝑖 )
(2)

𝒃 (𝑏 )
(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(35)

s.t. 𝒙 (𝑖 )
(1)

= 𝒙 (𝑖 )
(2)

. (36)

CMS often uses the Lagrange multiplier method to enforce the
boundary constraint [Yang et al. 2013]. Our novel subspace structure
of Eq. 34 eliminates duplicated boundary DOFs at the domains’

interface as 𝒙 (𝑏 )
(1)

and 𝒙 (𝑏 )
(2)

are now uniformly written as 𝒙 (𝑏 ) . The

global step of PD can be more efficiently solved by projecting Eq. 35
into the subspace of Eq. 34. The reduced global matrix remains
block-sparse, and the pre-computations of Eq. 30 can be carried out
in parallel at domains.

Domain decomposition and CMS-like subspace construction tech-
niques make our pipeline less sensitive to global matrix change e.g.,
due to material update or the presence of new constraints of colli-
sions. After the reduced global solve is obtained, we use Eq. 34 to
convert the generalized coordinate to the fullspace result. This result
is then sent to a GPU-based full-space solver to make sure the global
solution is accurate. In our implementation, we use the aggregated
Jacobi method (A-Jacobi) proposed in [Lan et al. 2022b]. A-Jacobi
combines two or three Jacobi iterations into one iteration to fully
exploit the parallel capacity of modern GPUs. As a result, mesh-
level simulation is efficient is nearly interactive in many examples
reported in this paper.

Note that a fast and numerically stable mesh simulation is critical
to the entire pipeline–it is not only helpful for simulating the volu-
metric homogenized knitwear materials but also an indispensable
module for elasticity fitting. Recall that our adjoint Gauss-Newton
is only feasible when Eq. 14 is satisfied. This requirement suggests
we need to find the equilibrium configuration of the mesh given
the current material vector 𝜸 . Whenever 𝜸 are updated during the
elasticity fitting process, we have to re-assemble and factorize 𝒙𝑀𝑖 ,
which is the most expensive computation along the pipeline. With-
out a fast solver, elasticity fitting at such a high-dimension material
space is infeasible.

8 EXPERIMENTAL RESULTS

We implemented our volumetric homogenization framework on
a desktop computer with an Intel i7-12700 CPU and an NVIDIA
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Fig. 7. Comparison with HYLC (1×1 rib). We compare our method with HYLC and homogenize a square knitted fabric of the periodic 1×1 rib

pattern. The full-scale YLS results are shown at the bottom for reference. In general, both our method and HYLC yield plausible results, and both

are visually similar to YLS results. Volumetric homogenization uses a mesh of 38K DOFs, while HYLC only has 9K DOFs. Nevertheless, our method

takes 85ms per frame and is ∼ 180× faster than HYLC.

Fig. 8. Comparison with HYLC (stockinette). Given fabric with a periodic stockinette pattern, our method effectively captures spatially varying

deformation leveraging material heterogeneity, particularly under significant stretch as highlighted. In the example, volumetric homogenization

uses a mesh of 42K DOFs, while HYLC has 12K DOFs. Our method is ∼ 350× faster than HYLC.

RTX 3090 GPU. We used Spectra library for computing the eigen-
decomposition of the mesh Laplacian, and 𝑲𝑖𝑖

𝑑
for each domain,

and Eigen [Guennebaud et al. 2010] as the primary interface of
linear algebra computations. The domain-decomposed PD proce-
dure consists of two steps. The first step solves the global matrix in
the subspace, and we employed the PARDISO solver [Schenk et al.
2001] shipped with Intel MKL [Wang et al. 2014]. Fullspace A-Jacobi
iterations [Lan et al. 2022b] are followed to make sure the global
step system is well solved. This step was implemented on the GPU
with CUDA. We used Chebyshev weight to improve the convergence
of A-Jacobi method [Wang 2015]. The local step is parallelized on
the GPU at each element with CUDA. Adjoint gradient descent and
adjoint Gauss-Newton are sensitive to the residual of Eq. 14 i.e.,
Eq. 14 must be strictly satisfied. Therefore, during the elasticity
fitting, we applied a few (three to five) Newton iterations after the
PD solve to keep the residual smaller than 1𝐸 − 5. We generate
full-scale YLS results by simulating each yarn as the Cosserat rod

model [Spillmann and Teschner 2007]. The detailed statistics of
experiments are reported in Tab. 1.

8.1 Comparison with HYLC

Homogenized yarn-level cloth (HYLC) [Sperl et al. 2020] provides
an excellent paradigm by homogenizing the “yarn material” to the
mid-surface of the fabric, represented as a triangle mesh. Our vol-
umetric homogenization method expands the dimensionality to a
3D volume with more DOFs and optimizes spatially varying mate-
rial properties instead of assuming a uniform material as in HYLC.
Our first experiment involves three side-by-side comparisons to
thoroughly understand the differences between our method and
HYLC 1. In HYLC, the Discrete Elastic Rod energy is replaced by
Cosserat Rod energy for our comparison. The visualization of both
our method and HYLC is achieved by embedding the yarn geometry
into the mesh.

1We used the implementation of HYLC at https://git.ista.ac.at/gsperl/HYLC
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Table 1. Statistics.We report detailed time statistics for experiments mentioned in the paper. 𝑛𝑌 is the total number DOFs on the yarn model.

𝑛𝑀 and 𝑛𝐸 are the numbers of mesh DOFs and mesh elements (and the deformable objects e.g., in Fig. 15). # 𝑑 is the number of domains used. # GN

reports the average number of adjoint Gauss-Newton iterations needed for elasticity fitting for each YLS pose. 𝑛𝐹 is the total number of sample

poses used in the example. Fit. gives the total time used for elasticity fitting. Δ𝑡 is the time step size of the forward simulation, and Sim. gives the

total time to simulate the homogenized knitwear for one time step.

𝑛𝑌 𝑛𝑀 𝑛𝐸 # 𝑑 # GN 𝑛𝐹 Fit. Δ𝑡 Sim.
Comp. HYLC (1×1 rib) (Fig. 7) 66K 38K 79K 1 15 2 0.5 hours 1/150 sec 85 ms
Comp. HYLC (stockinette) (Fig. 8) 66K 42K 83K 1 42 3 3.1 hours 1/150 sec 92 ms
Comp. HYLC (draping) (Fig. 9) 66K 42K 83K 1 26 2 1.2 hours 1/150 sec 103 ms
Basketweave (Fig. 10) 885K 107K 204K 6 17 4 2.2 hours 1/150 sec 137 ms
Montague (Fig. 10) 85K 48K 90K 9 10 4 0.7 hours 1/150 sec 96 ms
Flame (Fig. 10) 88K 60K 92K 7 11 4 0.8 hours 1/150 sec 117 ms
Mixed (Fig. 11) 118K 77K 151K 2 16 6 0.6 hours 1/150 sec 121 ms
Make a knot (Fig. 13) 277K 78K 91K 4 37 5 4.2 hours 1/200 sec 335 ms
Twisting (Fig. 14) 885K 107K 204K 6 16 4 3.7 hours 1/200 sec 672 ms
Puffer ball on the knit (Fig. 15) 31K 120K(207K) 140K(414K) 1 13 2 0.6 hours 1/250 sec 1132 ms
Yangge dance (Fig. 1) 3.0M 342K 389K 14 47 10 41.2 hours 1/150 sec 604 ms
Short-sleeve Yangge (Fig. 16) 2.7M 329K 361K 10 36 10 35.3 hours 1/150 sec 588 ms
Long-sleeve Yangge (Fig. 16) 2.6M 493K 420K 8 52 10 65.0 hours 1/150 sec 872 ms

Fig. 9. Comparison with HYLC (draping). We drape the pre-

stretched ribbing patch on a sphere. Our method better replicates

local deformation in the middle than HYLC. YLS simulation results are

not used for elasticity fitting, showing our method’s generalizability.

As shown in Fig. 7, both HYLC and our method yield visually
similar and plausible results for a knitted patch with a 1×1 rib pat-
tern compared to YLS as the ground truth. The 1×1 rib pattern is
highly stretchable due to the alternating knit and purl columns,
allowing the fabric to expand and contract significantly across its
width. However, HYLC, utilizing a single material across the entire
mesh, causes the patch to narrow in the perpendicular directions
when stretched, exhibiting a rubber-like behavior (see the right-
most column in Fig. 7). The inconsistency between our method

and HYLC becomes more apparent for the stockinette patch, which
is less stretchy than the rib but tends to curl at the edges. While
both sheet-based (HYLC) and volume-based (ours) materials display
curly edges under stretch, HYLC is less expressive in capturing
subtle deformation variations across the fabric due to the lack of
material heterogeneity. In contrast, our method better replicates
this phenomenon. We further test by draping a pre-stretched 1×1
rib patch over a sphere, demonstrating a similar difference to that
shown in Fig. 8. Both HYLC and our method produce reasonable
global deformation. However, our method, with a spatially varying
material, better captures the inhomogeneous deformation at the
contacting region. In this set of experiments, only two or three 𝒙𝑌𝑖
are used for elasticity fitting, and the draping simulation results are
not observed during the elasticity fitting.
In terms of performance, the tetrahedron mesh used in our

method consists of approximately 80K elements. This is a bigger
number compared with HYLC, which simulates a triangle mesh
of around 10K triangles. However, our constraint-based material
model (Eq. 7) allows for a more stable simulation with a larger
time step. The domain-decomposed PD solver completes these
experiments at Δ𝑡 = 1/150 sec, while HYLC must reduce to
Δ𝑡 = 1/500 sec (or even smaller) to ensure stability and prevent
divergence due to material nonlinearity. Additionally, HYLC
adaptively subdivides the mesh using ArcSim [Narain et al. 2013]
to improve stability. Overall, our method is two orders faster than
HYLC. The total training time is 0.5 hours, 3.1 hours, and 1.2 hours
for Fig. 7, Fig. 8, and Fig. 9, respectively.

8.2 More patterns

We further compare our results with yarn-level simulation (YLS) us-
ing three additional knit patterns: basketweave, montague, and flame
ribbing. Particularly, flame ribbing patterns exhibit anisotropic spa-
tial variation with non-periodic yarn structures, making it challeng-
ing to fit a homogeneous material model using HYLC. In contrast,
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Fig. 10. More patterns. We compare our results with YLS on basketweave, montague, and flame ribbing patterns. The leftmost column displays

the rest shape of the knit patch, while the middle and right columns show the simulation results when the fabric is stretched using our method and

YLS. We provide renderings from top and side views on the top and bottom rows, respectively. Our method accurately captures desired yarn-level

deformations that vary across the patch and exhibit anisotropic behaviors. The material distributions of 𝜸𝑠 and 𝜸 𝑣 are visualized on the right.

our volumetric homogenization does not rely on any assumptions
about the underlying arrangement of yarn structures. As shown
in Fig. 10, our method produces high-fidelity knit stretching results
that are nearly identical to YLS. As visualized on the right, the fitted

material distributions align well with the underlying yarn structure
and capture location-dependent deformations as expected.

Fig. 11 presents another experiment featuring a fabric composed
of two distinct patterns: stockinette and 1×1 rib. With the same
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Fig. 11. Mixed patterns. Our domain decomposed forward simulation is naturally compatible with garments made of combined patterns. In this

example, we simulate a hanging fabric consisting of two patterns: knit and rib. One can still observe nuanced differences between our method and

YLS, e.g., see highlighted areas. Nevertheless, homogenized simulation yields good animation results.

Fig. 12. Convergence plots.We plot the converge curves using ad-

joint Gauss-Newton and gradient descent. The first-order method does

not only converge properly, while second-order information in 𝑮𝑖
(Eq. 21) effectively helps find a better descent direction and lower the

loss function.

number of stitches per row, the rib pattern shrinks due to the alter-
nating knit and purl stitches, making it highly elastic and capable
of significant expansion and contraction, while the stockinette is
smooth and flat. This combined pattern poses a challenge to classic
homogenization theory. However, our method remains effective in
this case. Our domain-decomposed forward simulator naturally ac-
commodates such pattern combinations. While YLS provides richer
local details in this example, our method still produces reasonably
good results. In this case, we have 77K DOFs on the mesh, and the
simulation takes 121 ms for one time step, which is ∼ 80× faster
than running the simulation at the yarn level.

8.3 Convergence

The key to a successful volumetric homogenization is to solve the
inverse problem using high-order optimization techniques i.e., the
adjoint Gauss-Newton method discussed in Sec. 6. We note that
most existing gradient-based methods, either using adjoint method
or using AD (automatic differentiation) fail to converge in our case.
We plot the convergence curves using adjoint Gauss-Newton and
gradient descent for a representative elasticity fitting instance and

Fig. 13. Make a knot. We rotate two knitted scripts (garter block

pattern for the top and basketweave pattern for the bottom) for 1, 920
degrees to make a knot. There are 78𝐾 DOFs on the mesh, and homog-

enized simulation takes 335 ms for each time step (Δ𝑡 = 1/200).

show the result in Fig. 12. We also visualize the deformed mesh that
satisfies Eq. 14 at three different iterations. A consistent observation
is that first-order methods are never going to work. They frequently
get trapped at local minima. A more severe issue is the step size of
the gradient-based method is not stable. Performing line search is
expensive in elasticity fitting – any proposed material update Δ𝜸
can only be checked when Eq. 14 is satisfied, and therefore a forward
simulation procedure is invoked. This makes the first-order method
prohibitive in practice. For instance, it could take over one week
if we choose to use the first-order adjoint method or differentiable
simulation to optimize the rib pattern (Fig. 7). On the other hand,
Gauss-Newton finishes the training in about three hours.

8.4 Comparision at Different Resolution

The resolution of our volumetric material significantly influences
the fitting capability of our method. We compare our method’s per-
formance on basketweave material at various resolutions as shown
in Fig. 17. The center of the basketweave patch was fixed with a
sphere. While the boundary condition exhibits rotational symmetry,
the basketweave demonstrates distinct bending behaviors between
the course and wale directions. When the mesh resolution is close
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Fig. 14. Twisting.We twist a square basketweave fabric for 900 degrees. In this example, the final deformed shape of our method does not perfectly

align with the YLS result (please refer to the supplementary video for the animated simulation result). This is because the shape discrepancy

accumulates at each frame, leading to different fabric-fabric collisions during the twisting. While not exactly same as YLC, our results are natural

and realistic. There are 107K DOFs on the mesh. The homogenized simulation takes 672 ms for each time step (Δ𝑡 = 1/200) and is ∼ 120× faster.

Fig. 15. Puffer ball on the knit.We separate the processing of energy constraint (on the mesh) and collision constraint (at the yarn level) so that

the homogenized model interacts as a yarn-level model. In this example, a puffer ball falls on a stockinette fabric. The hairs on the puffer ball pass

through the gaps on the knit. They are two-way coupled under collision constraints and can be conveniently processed with our simulation.

Fig. 16. Short- and long-sleeve Yangge. In addition to Fig. 1, we show two more examples of full garment animations. On the left, the character

wears a knitted short-sleeve sweater. It has a different pattern (stockinette pattern) than the one shown in Fig. 1, which yields different garment

dynamics. On the right, the character wears a long-sleeve sweater in a stockinette pattern. The material distributions are visualized on the right.

to or higher than that of the knit pattern, our approach produces
results nearly identical to the ground truth. When the mesh reso-
lution is significantly lower than that of the knit pattern, we still
observe anisotropic bending behavior, but the distinction between
the bending behaviors in the course and wale directions is not as
sharp as in the ground truth.

8.5 More Results

We test our method in several complex scenes. Figs. 13 and 14 report
two challenging simulation scenarios involving intensive twisting
and bending. In Fig. 13, we rotate two fabric strips (basketweave)
for about 1, 920 degrees. They are tightly intertwined to form a knot.
In this case, volumetric homogenization yields a stronger volume-
preserving penalty than examples shown in Fig. 10. We would like
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Fig. 17. Comparison at different resolution. We compare our method’s fitting capabilities across varying mesh resolutions by presenting an

instance of a basketweave fabric draped over a sphere. Each panel displays the fabric fitting result at a different level of resolution. The smallest

thumbnail inset in the bottom left panel provides the ground truth. The middle and the leftmost panels, where each cell’s size is similar to or

smaller than the size of each loop structure of threads, show fitting results that are essentially consistent with the ground truth. However, the

rightmost panel, with a much coaser resolution, displays anisotropic bending effects macroscopically but significantly loses sharp bending details.

to mention that while the homogenized simulation uses the tetrahe-
dron mesh for energy integration and elasticity constraint projec-
tion, we can still process collision at yarn segments if needed (e.g.,
see Fig. 15). As most yarn-yarn contacts are inelastic, we follow the
collision projection strategy as in vanilla PD [Bouaziz et al. 2014]
for each edge-edge collision. The collision impulse is then inter-
polated to the corresponding tetrahedron [Lan et al. 2022a]. For
collision detection, to enhance performance, we adopt the DCD
(Discrete collision detection) strategy, noting that edge-edge colli-
sion pairs that exist in the same cell or adjacent cells can be excluded
in advance. Of course, if we aim for strict non-penetration, we can
adopt CCD (Continuous collision detection) with the interior point
method as in [Li et al. 2021]. Although in our experiments we used
the DCD collision detection method, which does not have guaran-
tees and may eventually result in inter-penetration, we find that our
homogenized animations remain visually plausible. Fig. 14 show-
cases an animation of twisting a wider fabric. Similar to Fig. 13, our
method faithfully captures the twisting behaviors of such a com-
plicated yarn structure using our volume-preserving energy. The
YLS result can be found in the supplementary video. There are 91K
elements in Fig. 13 and 204K elements in Fig. 14. The simulation
uses 335 ms for one time step on average in Fig. 13 and 672 ms in
Fig. 14.
Fig. 16 and Fig. 1 show the animation of three different knit

garments on a virtual character performing Yangge dance. Different
patterns on the front panels of the garments lead to interesting and
distinctive animation effects even under the same character motion.
Our homogenized simulations well replicate the YLS results but
are two orders faster. In these three examples, we use ten poses for
the elasticity training. The resulting material distributions are also
visualized in the figures.

8.6 Generalizability

Most of our experiment’s training data is directly sampled from
the animation sequence. However, in Fig. 9, the draping test of the
pre-stretched patch uses training data based on lateral stretching
deformation. The final result shows a similar draping behavior to
YLS, demonstrating the generalizability of our method to some ex-
tent. Here, we provide additional experiments to further explore the

Fig. 18. Mixed patterns (draping). We drape the mixed pattern on

a cylinder, reusing the material of the mixed pattern trained in Fig. 11

Our method exhibits almost the same behavior as YLS.

generalizability of our method. Fig. 18 demonstrates the draping
of mixed patterns on a cylindrical form, using the material of the
mixed pattern trained as shown in Fig. 11, the homogenized simula-
tion exhibits almost the same behavior. Besides sample training data
from the animation sequence, we can also follow the data generation
protocol as in HYLC to sample possible deformations. In Fig. 19, we
generate five types of deformation poses: Panel 1 shows a simple up-
ward bend along the central axis, creating a smooth concave shape;
Panel 2 presents a diagonal bend, where the material curves along
the diagonal axis; Panel 3 illustrates a fan-like stretch configuration;
Panel 4 depicts a twisting deformation that forms a helicoidal struc-
ture; and Panel 5 features a more complex, multi-folded bend with
several folds along the material. Each of these poses, along with
their symmetric counterparts, progressively composes the training
set used to train the material distribution, as shown in Fig. 20. As
the training data set increases, the behavior becomes closer to that
of YLS. It is important to note that the training dataset does not
include any data from the YLS animation sequence shown in Fig. 20.

9 CONCLUSION & LIMITATION

This paper explores a different perspective on improving the sim-
ulation of knitwear with complex knitting patterns. We name our
method volumetric homogenization because it enables a volumetric
and spatially heterogeneous material synthesis. The advantages

ACM Trans. Graph., Vol. 43, No. 6, Article 207. Publication date: December 2024.



Volumetric Homogenization for Knitwear Simulation • 207:17

Fig. 19. More poses.We follow the data generation protocol outlined in HYLC to sample five types of deformation, including their symmetric

counterparts. The first two types are bending along the central axis and diagonal axis. The third deformation is a fan-like expansion. For the fourth

type, the fabric is subject to a twist that forms a helix, we include the multi-folded deformation featuring several folds along the material.

Fig. 20. Dropping to ground.We utilize the training data generated from Fig. 19 and compare the dropping behavior with different training sets.

Initially, only the first two bending types are used as our training data. In the subsequent panel, the fan-like expansion and twist types are also

included. All deformation types in Fig. 19 are added in the third panel. The corresponding material distributions are shown in the top-right corner

of each panel. The YLS is displayed in the rightmost column.

of this strategy are multifold. Volume materials implicitly handle
the bending and twisting and reduce the nonlinearity of the mate-
rial property. It allows a faster simulation algorithm and, in turn,
benefits the fitting efficiency. Assigning each volume element an
independent set of material parameters effectively enhances the
versatility of simulation so that our method is able to capture subtle
and visually pleasing local deformations of complex knittings. With
a domain-decomposed PD solver, our method is orders of magnitude
faster than full-scale YLS.

While volumetric homogenization shows make some non-trivial
improvements over existing methods, it still has drawbacks and
limitations. We leverage shape fitting to extract the acceleration of
YLS sequences and to isolate the inertia effects during the material
learning. For fast-moving scenes however, the estimated inertia and
lumped mass may still differ from the reference. Yarn-level cloth
models are often highly dampened. This is because the friction and
contacts among yarn threads dissipate inertia energy quickly. It is
challenging to calibrate a homogenized garment with full-scale YLS
using commonly seen macroscopic damping models e.g., Rayleigh
damping. Being a data-driven method, our method could generate
different results of the same knitwear given different YLS inputs.
It is possible to learn a more sophisticated strain-stress model as
in [Sperl et al. 2020] at each element. Doing so requires significant
computations, and the resulting material becomes strongly nonlin-
ear (again). In other words, it remains an open question to find the
right compromise between material nonlinearity, the level of visual
realism, and computational efficiency.

ACKNOWLEDGMENTS

We thank reviewers for their detailed and constructive comments.
Yin Yang is partially supported byNSF under grant numbers 2301040,
2008915, 2244651, 2008564. Chenfanfu Jiang is supported in part by
NSF CAREER 2153851, CCF 2153863, ECCS-2023780.

REFERENCES
Grégoire Allaire and Robert Brizzi. 2005. A multiscale finite element method for

numerical homogenization. Multiscale Modeling & Simulation 4, 3 (2005), 790–812.
Erik Andreassen and Casper Schousboe Andreasen. 2014. How to determine composite

material properties using numerical homogenization. Computational Materials
Science 83 (2014), 488–495.

David Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies.
In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’94). Association for Computing Machinery, New York, NY,
USA, 23–34.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). Association for Computing Machinery, New York, NY, USA, 43–54.

David Baraff, Andrew Witkin, and Michael Kass. 2003. Untangling cloth. ACM Trans-
actions on Graphics (TOG) 22, 3 (2003), 862–870.

Klaus-Jürgen Bathe. 2006. Finite element procedures. Klaus-Jurgen Bathe, MA, USA.
Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun.

2010. Discrete viscous threads. ACM Transactions on graphics (TOG) 29, 4 (2010),
1–10.

Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006.
A quadratic bending model for inextensible surfaces. In Proceedings of the Fourth
Eurographics Symposium on Geometry Processing (Cagliari, Sardinia, Italy) (SGP ’06).
Eurographics Association, Goslar, DEU, 227–230.

Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun.
2008. Discrete elastic rods. In ACM SIGGRAPH 2008 Papers (Los Angeles, California)
(SIGGRAPH ’08). Association for Computing Machinery, New York, NY, USA, Article
63, 12 pages.

Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2021. PBNS: physically based
neural simulation for unsupervised garment pose space deformation. ACM Trans.
Graph. 40, 6, Article 198 (dec 2021), 14 pages.

ACM Trans. Graph., Vol. 43, No. 6, Article 207. Publication date: December 2024.



207:18 • Chun Yuan, Haoyang Shi, Lei Lan, Yuxing Qiu, Cem Yuksel, Huamin Wang, Chenfanfu Jiang, Kui Wu, and Yin Yang

Hugo Bertiche, Meysam Madadi, and Sergio Escalera. 2022. Neural cloth simulation.
ACM Transactions on Graphics (TOG) 41, 6 (2022), 1–14.

Pablo J Blanco, Pablo J Sánchez, Eduardo A de Souza Neto, and Raúl A Feijóo. 2016.
Variational foundations and generalized unified theory of RVE-based multiscale
models. Archives of Computational Methods in Engineering 23 (2016), 191–253.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder. 2003. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. ACM transactions on graphics (TOG)
22, 3 (2003), 917–924.

Léon Bottou et al. 1991. Stochastic gradient learning in neural networks. Proceedings
of Neuro-Nımes 91, 8 (1991), 12.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: fusing constraint projections for fast simulation. ACM Trans.
Graph. 33, 4, Article 154 (jul 2014), 11 pages.

Robert Bridson, Ronald Fedkiw, and JohnAnderson. 2002. Robust treatment of collisions,
contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (jul 2002), 594–603.

R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of clothing with folds and
wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (San Diego, California) (SCA ’03). Eurographics Association,
Goslar, DEU, 28–36.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002. A
multiresolution framework for dynamic deformations. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics Symposium on Computer Animation (San Antonio,
Texas) (SCA ’02). Association for Computing Machinery, New York, NY, USA, 41–47.

Juan J. Casafranca, Gabriel Cirio, Alejandro Rodríguez, Eder Miguel, and Miguel A.
Otaduy. 2020. Mixing Yarns and Triangles in Cloth Simulation. Computer Graphics
Forum 39, 2 (2020), 101–110.

Desai Chen, David IW Levin, Wojciech Matusik, and Danny M Kaufman. 2017.
Dynamics-aware numerical coarsening for fabrication design. ACM Transactions on
Graphics (TOG) 36, 4 (2017), 1–15.

Desai Chen, David IW Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-driven
finite elements for geometry and material design. ACM Transactions on Graphics
(TOG) 34, 4 (2015), 1–10.

Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numer-
ical coarsening using discontinuous shape functions. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1–12.

Yunuo Chen, Tianyi Xie, Cem Yuksel, Danny Kaufman, Yin Yang, Chenfanfu Jiang, and
Minchen Li. 2023. Multi-Layer Thick Shells. In ACM SIGGRAPH 2023 Conference
Proceedings (Los Angeles, CA, USA) (SIGGRAPH ’23). Association for Computing
Machinery, New York, NY, USA, Article 25, 9 pages.

Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but responsive cloth. ACM Trans.
Graph. 21, 3 (jul 2002), 604–611.

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-
level simulation of woven cloth. ACM Trans. Graph. 33, 6, Article 207 (nov 2014),
11 pages.

Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. Efficient simulation of
knitted cloth using persistent contacts. In Proceedings of the 14th ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA
’15). Association for Computing Machinery, New York, NY, USA, 55–61.

David Clyde, Joseph Teran, and Rasmus Tamstorf. 2017. Modeling and Data-Driven
Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH /
Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA ’17).
Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages.

Roy R Craig Jr. 1985. A review of time-domain and frequency-domain component mode
synthesis method. (1985).

Roy R Craig Jr and Arthur L Hale. 1988. Block-Krylov component synthesis method
for structural model reduction. Journal of Guidance, Control, and Dynamics 11, 6
(1988), 562–570.

Eduardo Alberto De Souza Neto, Pablo Javier Blanco, Pablo Javier Sánchez, and Raúl An-
tonino Feijóo. 2015. An RVE-based multiscale theory of solids with micro-scale
inertia and body force effects. Mechanics of Materials 80 (2015), 136–144.

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and
Wojciech Matusik. 2021. Diffpd: Differentiable projective dynamics. ACM Transac-
tions on Graphics (TOG) 41, 2 (2021), 1–21.

Elliot English and Robert Bridson. 2008. Animating developable surfaces using non-
conforming elements. ACM Trans. Graph. 27, 3 (aug 2008), 1–5.

Hans A Eschenauer and Niels Olhoff. 2001. Topology optimization of continuum
structures: a review. Appl. Mech. Rev. 54, 4 (2001), 331–390.

Xudong Feng, Wenchao Huang, Weiwei Xu, and Huamin Wang. 2022. Learning-based
bending stiffness parameter estimation by a drape tester. ACM Transactions on
Graphics (TOG) 41, 6 (2022), 1–16.

Xudong Feng, Weiwei Xu, Huamin Wang, and Yin Yang. 2024. Neural-Assisted Homog-
enization of Yarn-Level Cloth. ACM Transactions on Graphics (TOG) 34, 4 (2024),
1–11.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A Practical
Gauss-Seidel Method for Stable Soft Body Dynamics. ACM Trans. Graph. 35, 6,
Article 214 (Nov. 2016), 9 pages.

Akash Garg, Eitan Grinspun, Max Wardetzky, and Denis Zorin. 2007. Cubic shells.
In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (San Diego, California) (SCA ’07). Eurographics Association, Goslar, DEU,
91–98.

Marc GD Geers, Varvara G Kouznetsova, and WAM1402 Brekelmans. 2010. Multi-scale
computational homogenization: Trends and challenges. Journal of computational
and applied mathematics 234, 7 (2010), 2175–2182.

Dan Givoli. 2021. A tutorial on the adjoint method for inverse problems. Computer
Methods in Applied Mechanics and Engineering 380 (2021), 113810.

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun.
2007. Efficient simulation of inextensible cloth. ACM Trans. Graph. 26, 3 (jul 2007),
49–es.

F. Sebastin Grassia. 1998. Practical parameterization of rotations using the exponential
map. J. Graph. Tools 3, 3 (mar 1998), 29–48. https://doi.org/10.1080/10867651.1998.
10487493

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete
shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (San Diego, California) (SCA ’03). Eurographics Association, Goslar,
DEU, 62–67.

Eitan Grinspun, Petr Krysl, and Peter Schröder. 2002. CHARMS: A simple framework
for adaptive simulation. ACM transactions on graphics (TOG) 21, 3 (2002), 281–290.

Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URl: http://eigen. tuxfamily. org 3, 1
(2010).

Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, and Joseph
Teran. 2018. A material point method for thin shells with frictional contact. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 1–15.

David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Robust
Treatment of Simultaneous Collisions. In ACM SIGGRAPH 2008 Papers (Los Angeles,
California) (SIGGRAPH ’08). Association for Computing Machinery, New York, NY,
USA, Article 23, 4 pages.

Florian Hecht, Yeon Jin Lee, Jonathan R Shewchuk, and James F O’Brien. 2012. Updated
sparse cholesky factors for corotational elastodynamics. ACM Transactions on
Graphics (TOG) 31, 5 (2012), 1–13.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating knitted
cloth at the yarn level. ACM Trans. Graph. 27, 3 (aug 2008), 1–9.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient yarn-based
cloth with adaptive contact linearization. ACM Trans. Graph. 29, 4, Article 105 (jul
2010), 10 pages.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface re-
construction. In Proceedings of the Fourth Eurographics Symposium on Geometry
Processing (Cagliari, Sardinia, Italy) (SGP ’06). Eurographics Association, Goslar,
DEU, 61–70.

Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numer-
ical coarsening of inhomogeneous elastic materials. ACM Transactions on graphics
(TOG) 28, 3 (2009), 1–8.

Theodore Kim. 2020. A Finite Element Formulation of Baraff-Witkin Cloth. Computer
Graphics Forum 39, 8 (2020), 171–179.

Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations (ICLR). ICLR, San Diega, CA,
USA, 15 pages.

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022a. Affine
body dynamics: fast, stable and intersection-free simulation of stiff materials. ACM
Trans. Graph. 41, 4, Article 67 (jul 2022), 14 pages.

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.
2022b. Penetration-free projective dynamics on the GPU. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1–16.

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L James, and Steve Marschner.
2018. Interactive design of periodic yarn-level cloth patterns. ACM Transactions on
Graphics (TOG) 37, 6 (2018), 1–15.

Yongjoon Lee, Sung-eui Yoon, Seungwoo Oh, Duksu Kim, and Sunghee Choi. 2010.
Multi-Resolution Cloth Simulation. Computer Graphics Forum (2010). https://doi.
org/10.1111/j.1467-8659.2010.01811.x

Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby,
George E. Brown, and Laurence Boissieux. 2018. An Implicit Frictional Contact
Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (July
2018), 15 pages.

Minchen Li, DannyM. Kaufman, and Chenfanfu Jiang. 2021. Codimensional incremental
potential contact. ACM Trans. Graph. 40, 4, Article 170 (jul 2021), 24 pages.

Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. 2022. DiffCloth: Differentiable
Cloth Simulation with Dry Frictional Contact. ACM Trans. Graph. 42, 1, Article 2
(oct 2022), 20 pages.

Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation for
Inverse Problems. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32.
Curran Associates, Inc., Vancouver, Canada.

ACM Trans. Graph., Vol. 43, No. 6, Article 207. Publication date: December 2024.



Volumetric Homogenization for Knitwear Simulation • 207:19

Chenchen Liu and Celia Reina. 2016. Discrete averaging relations for micro to macro
transition. Journal of Applied Mechanics 83, 8 (2016), 081006.

Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan. 2013. Fast
simulation of mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6
(2013), 1–7.

E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. A. Otaduy, and S.
Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Comput.
Graph. Forum 31, 2pt2 (May 2012), 519–528.

Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C. Schvartzman, Bernhard
Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, and Miguel A.
Otaduy. 2013. Modeling and Estimation of Internal Friction in Cloth. ACM Trans.
Graph. 32, 6, Article 212 (Nov. 2013), 10 pages.

Jorge J Moré. 2006. The Levenberg-Marquardt algorithm: implementation and theory.
In Numerical analysis: proceedings of the biennial Conference held at Dundee, June
28–July 1, 1977. Springer Berlin, Heidelberg, Heidelberg, Germany, 105–116.

Rahul Narain, Tobias Pfaff, and James F O’Brien. 2013. Folding and crumpling adaptive
sheets. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–8.

Rahul Narain, Armin Samii, and James F O’brien. 2012. Adaptive anisotropic remeshing
for cloth simulation. ACM transactions on graphics (TOG) 31, 6 (2012), 1–10.

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting
machine programming. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.

Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. 2018. Fast Approximation
of Laplace-Beltrami Eigenproblems. Computer Graphics Forum 37, 5 (2018), 121–134.

Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. 2009. Preserving
topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3,
Article 52 (jul 2009), 9 pages.

Jorge Nocedal and Stephen J Wright. 1999. Numerical optimization. Springer, New York,
NY, USA.

Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009.
Implicit Contact Handling for Deformable Objects. Computer Graphics Forum 28, 2
(2009), 559–568.

Dinesh K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat
Models. Computer Graphics Forum 21, 3 (2002), 347–352.

Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis
Zorin. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4 (2015),
135–1.

Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018.
Anderson acceleration for geometry optimization and physics simulation. ACM
Trans. Graph. 37, 4, Article 42 (jul 2018), 14 pages. https://doi.org/10.1145/3197517.
3201290

Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J Black. 2017. ClothCap:
Seamless 4D clothing capture and retargeting. ACM Transactions on Graphics (ToG)
36, 4 (2017), 1–15.

Xavier Provot. 1995. Deformation Constraints in a Mass-Spring Model to Describe
Rigid Cloth Behaviour. In Proceedings of Graphics Interface ’95 (Quebec, Quebec,
Canada) (GI ’95). Canadian Human-Computer Communications Society, Toronto,
Ontario, Canada, 147–154.

Xavier Provot. 1997. Collision and self-collision handling in cloth model dedicated to
design garments. In Computer Animation and Simulation ’97, Daniel Thalmann and
Michiel van de Panne (Eds.). Springer Vienna, Vienna, 177–189.

RosaM. Sánchez-Banderas, Alejandro Rodríguez, Héctor Barreiro, andMiguel A. Otaduy.
2020. Robust eulerian-on-lagrangian rods. ACM Trans. Graph. 39, 4, Article 59 (aug
2020), 10 pages.

Igor Santesteban, Miguel A. Otaduy, and Dan Casas. 2019. Learning-Based Animation
of Clothing for Virtual Try-On. Computer Graphics Forum 38, 2 (2019), 355–366.

Igor Santesteban, Miguel A Otaduy, and Dan Casas. 2022. Snug: Self-supervised neural
dynamic garments. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 8140–8150.

Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas Stricker. 2001. PARDISO:
a high-performance serial and parallel sparse linear solver in semiconductor device
simulation. Future Generation Computer Systems 18, 1 (2001), 69–78.

Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and
Markus Gross. 2015. Microstructures to control elasticity in 3D printing. ACM
Transactions on Graphics (Tog) 34, 4 (2015), 1–13.

Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized yarn-level cloth.
ACM Trans. Graph. 39, 4 (2020), 48.

Georg Sperl, Rosa M. Sánchez-Banderas, Manwen Li, Chris Wojtan, and Miguel A.
Otaduy. 2022. Estimation of yarn-level simulation models for production fabrics.
ACM Trans. Graph. 41, 4, Article 65 (jul 2022), 15 pages.

J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic
simulation of one-dimensional elastic objects. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (San Diego, California)
(SCA ’07). Eurographics Association, Goslar, DEU, 63–72.

Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation
multigrid for cloth simulation. ACM Transactions on Graphics (TOG) 34, 6 (2015),
1–13.

Albert Tarantola. 2005. Inverse Problem Theory and Methods for Model Parameter
Estimation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. SIGGRAPH Comput. Graph. 21, 4 (aug 1987), 205–214.

Rosell Torres, Alejandro Rodríguez, José M Espadero, and Miguel A Otaduy. 2016. High-
resolution interaction with corotational coarsening models. ACM Transactions on
Graphics (TOG) 35, 6 (2016), 1–11.

Bruno Vallet and Bruno Lévy. 2008. Spectral Geometry Processing with Manifold
Harmonics. Computer Graphics Forum 27, 2 (2008), 251–260.

Pascal Volino and Nadia Magnenat Thalmann. 2000. Implementing Fast Cloth Sim-
ulation with Collision Response. In Proceedings of the International Conference on
Computer Graphics (CGI ’00). IEEE Computer Society, USA, 257.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, Yajuan
Wang, Endong Wang, Qing Zhang, Bo Shen, et al. 2014. Intel math kernel library.
High-Performance Computing on the Intel® Xeon Phi™: How to Fully Exploit MIC
Architectures (2014), 167–188.

Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective
and Position-Based Dynamics. ACM Trans. Graph. 34, 6, Article 246 (Oct. 2015),
9 pages.

HuaminWang. 2018. Rule-free sewing pattern adjustment with precision and efficiency.
ACM Trans. Graph. 37, 4, Article 53 (jul 2018), 13 pages. https://doi.org/10.1145/
3197517.3201320

Huamin Wang, James O’Brien, and Ravi Ramamoorthi. 2010. Multi-resolution isotropic
strain limiting. ACM Transactions on Graphics (TOG) 29, 6 (2010), 1–10.

Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi. 2011. Data-Driven Elastic
Models for Cloth: Modeling and Measurement. In ACM SIGGRAPH 2011 Papers
(Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Association for Computing
Machinery, New York, NY, USA, Article 71, 12 pages.

Huamin Wang and Yin Yang. 2016. Descent Methods for Elastic Body Simulation on
the GPU. ACM Trans. Graph. 35, 6, Article 212 (Nov. 2016), 10 pages.

Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang.
2018. Parallel Multigrid for Nonlinear Cloth Simulation. Computer Graphics Forum
37, 7 (2018), 131–141.

Zhendong Wang, Yin Yang, and Huamin Wang. 2023. Stable Discrete Bending by Ana-
lytic Eigensystem and Adaptive Orthotropic Geometric Stiffness. ACM Transactions
on Graphics (TOG) 42, 6 (2023), 1–16.

Nicholas JWeidner, Kyle Piddington, David IWLevin, and Shinjiro Sueda. 2018. Eulerian-
on-lagrangian cloth simulation. ACM Transactions on Graphics (TOG) 37, 4 (2018),
1–11.

Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable stitch meshes. ACM Transac-
tions on Graphics (TOG) 38, 1 (2019), 1–13.

Kui Wu, Marco Tarini, Cem Yuksel, Jim McCann, and Xifeng Gao. 2021. Wearable 3D
Machine Knitting: Automatic Generation of Shaped Knit Sheets to Cover Real-World
Objects. IEEE Transactions on Visualization & Computer Graphics 1, 01 (feb 2021),
1–1.

Longhua Wu, Botao Wu, Yin Yang, and Huamin Wang. 2020. A Safe and Fast Repulsion
Method for GPU-based Cloth Self Collisions. ACM Trans. Graph. 40, 1, Article 5
(dec 2020), 18 pages.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid
method for real-time simulation of deformable objects. ACM Transactions on Graph-
ics (TOG) 38, 6 (2019), 1–13.

Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. 2015. Nonlinear material
design using principal stretches. ACM Transactions on Graphics (TOG) 34, 4 (2015),
1–11.

Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, and Baining Guo. 2013. Boundary-aware
multidomain subspace deformation. IEEE transactions on visualization and computer
graphics 19, 10 (2013), 1633–1645.

Cem Yuksel, Jonathan M Kaldor, Doug L James, and Steve Marschner. 2012. Stitch
meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on
Graphics (TOG) 31, 4 (2012), 1–12.

Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2021. SGN: Sparse Gauss-
Newton for Accelerated Sensitivity Analysis. ACM Trans. Graph. 41, 1, Article 4
(sep 2021), 10 pages.

Yumin Zhang, Steven Garcia, Weiwei Xu, Tianjia Shao, and Yin Yang. 2018. Efficient
voxelization using projected optimal scanline. Graphical Models 100 (2018), 61–70.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient multi-
grid method for the simulation of high-resolution elastic solids. ACM Transactions
on Graphics (TOG) 29, 2 (2010), 1–18.

Simon Zimmermann, Roi Poranne, James M. Bern, and Stelian Coros. 2019. Puppet-
Master: robotic animation of marionettes. ACM Trans. Graph. 38, 4, Article 103 (jul
2019), 11 pages. https://doi.org/10.1145/3306346.3323003

Borut Žalik, Gordon Clapworthy, and Črtomir Oblonšek. 1997. An Efficient Code-Based
Voxel-Traversing Algorithm. Computer Graphics Forum 16, 2 (1997), 119–128.

ACM Trans. Graph., Vol. 43, No. 6, Article 207. Publication date: December 2024.


